A Necessary and Sufficient Condition for a Self-Diffeomorphism of a Smooth Manifold to be the Time-1 Map of the Flow of a Differential Equation

Dr. Jeff Rolland

Department of Mathematics University of Wisconsin - Milwaukee

December 01, 2021

• Let M^n be a smooth manifold, let $h: M \to \mathbb{R}^n$ be a smooth map, and let $p \in M$ be an isolated zero of h.

э

- Let Mⁿ be a smooth manifold, let h : M → ℝⁿ be a smooth map, and let p ∈ M be an isolated zero of h.
- Then we might attempt to use **Newton's method** to find p, that is, we might choose x_0 in a neighborhood of p, find a solution v_i of $h(x_i) + Dh(x_i)(v) = 0$, then set $x_{i+1} = \exp(v_i)$ and hope $\lim_{i \to \infty} (x_i) = p$.

伺 ト イ ヨ ト イ ヨ ト

- Let Mⁿ be a smooth manifold, let h : M → ℝⁿ be a smooth map, and let p ∈ M be an isolated zero of h.
- Then we might attempt to use **Newton's method** to find p, that is, we might choose x_0 in a neighborhood of p, find a solution v_i of $h(x_i) + Dh(x_i)(v) = 0$, then set $x_{i+1} = \exp(v_i)$ and hope $\lim_{i \to \infty} (x_i) = p$.
- (A modified version of this might be used to find an isolated critical point of a differential equation on a Riemannian manifold *M*.)

何 ト イヨ ト イヨ ト

- Let Mⁿ be a smooth manifold, let h : M → ℝⁿ be a smooth map, and let p ∈ M be an isolated zero of h.
- Then we might attempt to use **Newton's method** to find p, that is, we might choose x_0 in a neighborhood of p, find a solution v_i of $h(x_i) + Dh(x_i)(v) = 0$, then set $x_{i+1} = \exp(v_i)$ and hope $\lim_{i \to \infty} (x_i) = p$.
- (A modified version of this might be used to find an isolated critical point of a differential equation on a Riemannian manifold *M*.)
- If Dh(p): T_p(M) → ℝⁿ is nonsingular for all p ∈ M, define
 f : M → M by f(p) = exp{Dh(p)⁻¹[-h(p)]}. Then f is a self-map of M of the kind that might be considered in smooth dynamics.

(4月) (3日) (3日) 日

One wants to know the behavior of the sequences

 (x_i) = fⁱ(x₀) for various choices of x₀, in particular, when they converge to such an isolated zero p, when they tend towards a "cyclic sequence" of points (p₁, p₂, ..., p_k), and when and how quickly they diverge to infinity.

- One wants to know the behavior of the sequences

 (x_i) = fⁱ(x₀) for various choices of x₀, in particular, when they converge to such an isolated zero p, when they tend towards a "cyclic sequence" of points (p₁, p₂, ..., p_k), and when and how quickly they diverge to infinity.
- Various sets, such as the Fatou set and the Julia set of *f*, can then be defined.

Global Analysis

• Let M^n be a smooth manifold, let $\mathfrak{X}(M) = \{\zeta : M \to TM \mid \pi_M \circ \zeta = \mathrm{id}_M\}$ be the set of all the differential equations (also known as a tangent vector fields) on M, and let $\xi \in \mathfrak{X}(M)$.

何 ト イヨ ト イヨ ト

Global Analysis

• Let M^n be a smooth manifold, let $\mathfrak{X}(M) = \{\zeta : M \to TM \mid \pi_M \circ \zeta = \mathrm{id}_M\}$ be the set of all the differential equations (also known as a tangent vector fields) on M, and let $\xi \in \mathfrak{X}(M)$.

(We are most interested in the case that M = TQ for Q a closed, Riemannian manifold – the configuration space [or "c-space"] of a robot arm, for instance – and ξ is the vector field corresponding to an "elementary" Lagrangian on TQ [elementary with respect to a specific coordinate patch on Q]).

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Global Analysis

Let Mⁿ be a smooth manifold, let
 𝔅(M) = {ζ : M → TM | π_M ∘ ζ = id_M} be the set of all the
 differential equations (also known as a tangent vector fields)
 on M, and let ξ ∈ 𝔅(M).

- (We are most interested in the case that M = TQ for Q a closed, Riemannian manifold the configuration space [or "c-space"] of a robot arm, for instance and ξ is the vector field corresponding to an "elementary" Lagrangian on TQ [elementary with respect to a specific coordinate patch on Q]).
- Then, if ξ is **complete**, ξ has a flow, $\Phi_t : M \times \mathbb{R} \to M$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Let Mⁿ be a smooth manifold, let
 𝔅(M) = {ζ : M → TM | π_M ∘ ζ = id_M} be the set of all the
 differential equations (also known as a tangent vector fields)
 on M, and let ξ ∈ 𝔅(M).

- (We are most interested in the case that M = TQ for Q a closed, Riemannian manifold the configuration space [or "c-space"] of a robot arm, for instance and ξ is the vector field corresponding to an "elementary" Lagrangian on TQ [elementary with respect to a specific coordinate patch on Q]).
- Then, if ξ is **complete**, ξ has a flow, $\Phi_t : M \times \mathbb{R} \to M$.
- Note 1) that ξ is always complete if M is closed, and 2)
 Φ₁ = f is a self-diffeomorphism of M.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Let M^n be a smooth manifold. Let $f: M \to M$ be a self-diffeomorphism of M. We say f is **rootable to the identity** if f is isotopic to the identity (note this implies f is orientation-preserving if M is orientable) and there is a sequence of self-diffeomorphisms (g_b) of M with

Let M^n be a smooth manifold. Let $f: M \to M$ be a self-diffeomorphism of M. We say f is **rootable to the identity** if f is isotopic to the identity (note this implies f is orientation-preserving if M is orientable) and there is a sequence of self-diffeomorphisms (g_b) of M with

• each g_b isotopic to the identity (note this implies each g_b is orientation-preserving if M is orientable)

Let M^n be a smooth manifold. Let $f : M \to M$ be a self-diffeomorphism of M. We say f is **rootable to the identity** if f is isotopic to the identity (note this implies f is orientation-preserving if M is orientable) and there is a sequence of self-diffeomorphisms (g_b) of M with

- each g_b isotopic to the identity (note this implies each g_b is orientation-preserving if M is orientable)
- $(g_b)^b = f$ (that is, each g_b is a " b^{th} root of f")

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let M^n be a smooth manifold. Let $f : M \to M$ be a self-diffeomorphism of M. We say f is **rootable to the identity** if f is isotopic to the identity (note this implies f is orientation-preserving if M is orientable) and there is a sequence of self-diffeomorphisms (g_b) of M with

- each g_b isotopic to the identity (note this implies each g_b is orientation-preserving if M is orientable)
- $(g_b)^b = f$ (that is, each g_b is a " b^{th} root of f")
- (The commutativity condition) for $b_1, b_2 \in \mathbb{N}$, $g_{b_1}[g_{b_2}(p)] = g_{b_1b_2}(p) = g_{b_2b_1}(p) = g_{b_2}[g_{b_1}(p)]$

• (The coherency condition) for $a \in \mathbb{Z}$, $(g_b)^a = \left(g_{\frac{b}{GCD(a,b)}}\right)^{\frac{a}{GCD(a,b)}}$

• • = • • = •

• (The coherency condition) for $a \in \mathbb{Z}$, $(g_b)^a = \left(g_{\frac{b}{GCD(a,b)}}\right)^{\frac{a}{GCD(a,b)}}$ • $\lim_{b \to \infty} (g_b) = \mathrm{id}_M.$

★ ∃ ► < ∃ ►</p>

• (The coherency condition) for $a \in \mathbb{Z}$,

$$(g_b)^a = \left(g_{\frac{b}{GCD(a,b)}}\right)^{\overline{GCD(a,b)}}$$

- $\lim_{b\to\infty}(g_b)=\mathrm{id}_M.$
- We call such a sequence (g_b) a root system to the identity. Note one should only need to determine (g_b) on some cofinal subset of the naturals that leads to a dense subset of the rationals, e.g., $b = 2^c$, leading to the dyadic rationals.

• (The coherency condition) for $a \in \mathbb{Z}$,

$$(g_b)^a = \left(g_{\frac{b}{GCD(a,b)}}\right)^{\overline{GCD(a,b)}}$$

- $\lim_{b\to\infty}(g_b)=\mathrm{id}_M.$
- We call such a sequence (g_b) a root system to the identity. Note one should only need to determine (g_b) on some cofinal subset of the naturals that leads to a dense subset of the rationals, e.g., $b = 2^c$, leading to the dyadic rationals.

• Set
$$\Phi_{\frac{a}{b}}: M \times \mathbb{Q} \to M$$
 by $\Phi_{\frac{a}{b}}(p) = (g_b)^a(p)$.

• (The coherency condition) for $a \in \mathbb{Z}$,

$$(g_b)^a = \left(g_{\frac{b}{GCD(a,b)}}\right)^{\frac{c}{GCD(a,b)}}$$

- $\lim_{b\to\infty}(g_b)=\mathrm{id}_M.$
- We call such a sequence (g_b) a root system to the identity. Note one should only need to determine (g_b) on some cofinal subset of the naturals that leads to a dense subset of the rationals, e.g., $b = 2^c$, leading to the dyadic rationals.

• Set
$$\Phi_{\frac{a}{b}}: M \times \mathbb{Q} \to M$$
 by $\Phi_{\frac{a}{b}}(p) = (g_b)^a(p)$.

We say f is continuously rootable to the identity if Φ_{a/b} extends to to a continuous function Φ_t : M × ℝ → M and call the root system to the identity (g_b) a continuous root system to the identity in this case.

伺 ト イ ヨ ト イ ヨ ト

• (The coherency condition) for $a \in \mathbb{Z}$,

$$(g_b)^a = \left(g_{\frac{b}{GCD(a,b)}}\right)^{\overline{GCD(a,b)}}$$

- $\lim_{b\to\infty}(g_b)=\mathrm{id}_M.$
- We call such a sequence (g_b) a root system to the identity. Note one should only need to determine (g_b) on some cofinal subset of the naturals that leads to a dense subset of the rationals, e.g., $b = 2^c$, leading to the dyadic rationals.

• Set
$$\Phi_{\frac{a}{b}}: M \times \mathbb{Q} \to M$$
 by $\Phi_{\frac{a}{b}}(p) = (g_b)^a(p)$.

- We say f is continuously rootable to the identity if Φ_a/b extends to to a continuous function Φ_t : M × ℝ → M and call the root system to the identity (g_b) a continuous root system to the identity in this case.
- Note that if such a continuous extension Φ_t exists, it is unique.

 We say f is smoothly rootable to the identity if Φ_t is smooth and call the root system to the identity (g_b) a smooth root system to the identity in this case. Theorem 1 (A Necessary and Sufficient Condition for a Self-Diffeomorphism of a Manifold to be the Time-1 Map of the Flow of a Differential Equation)

Let $n \in \mathbb{Z}^+$, M^n be a closed, smooth manifold, and f be a self-diffeomorphism of M. Then $f = \Phi_1$ for Φ_t the flow of a complete differential equation on M if and only if f is smoothly rootable to the identity. In this case, for a smooth root system to the identity (g_b) and corresponding flow Ψ_t , the differential equation ξ inducing Ψ_t is given by $\xi = \frac{\partial}{\partial t} \{\Psi_t\} \big|_{t=0}^{t=0}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let $M = S^1$ and let f be the antipodal map, $f(p) = -p = e^{i\pi}p = e^{-i\pi}p.$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Let $M = S^1$ and let f be the antipodal map, $f(p) = -p = e^{i\pi}p = e^{-i\pi}p.$

• Then there are two obvious smooth root systems to the identity, $g_{1,b}(p) = e^{\frac{i\pi}{b}}p$ and $g_{2,b}(p) = e^{\frac{-i\pi}{b}}p$.

何 ト イヨ ト イヨ ト

Let $M = S^1$ and let f be the antipodal map, $f(p) = -p = e^{i\pi}p = e^{-i\pi}p.$

- Then there are two obvious smooth root systems to the identity, $g_{1,b}(p) = e^{\frac{i\pi}{b}}p$ and $g_{2,b}(p) = e^{\frac{-i\pi}{b}}p$.
- Note that the self-diffeomorphism P of S^1 defined by $P(p) = \overline{p}$ (complex conjugation, picturing S^1 as being the unit circle in \mathbb{C}) has $DP^{-1} \circ \xi_2 \circ P = \xi_1$, for ξ_i the differential equation determined by $(g_{i,b})$, where $DP : TS^1 \to TS^1$ is the induced map on the tangent bundle.

伺 ト イ ヨ ト イ ヨ ト

(A generalization of an example from Jason Devito) With S^3 , thinking of S^3 as a Lie group, the antipodal map (left multiplication by -1, L_{-1}) has uncountably many square roots: left multiplication by any purely imaginary unit quaternion.

伺 ト イヨ ト イヨト

(A generalization of an example from Jason Devito) With S^3 , thinking of S^3 as a Lie group, the antipodal map (left multiplication by -1, L_{-1}) has uncountably many square roots: left multiplication by any purely imaginary unit quaternion.

• Every imaginary quaternion has exactly two quaternion square roots, u_3 and $-u_3$ with $(\pm u_3)^2 = q$. Only one of the $\pm u_3$'s at level 3 will have a angle smaller that q with 1, the other one will be $-u_3$ and will have a smaller angle than q with -1.

・ 同 ト ・ ヨ ト ・ ヨ ト …

(A generalization of an example from Jason Devito) With S^3 , thinking of S^3 as a Lie group, the antipodal map (left multiplication by -1, L_{-1}) has uncountably many square roots: left multiplication by any purely imaginary unit quaternion.

- Every imaginary quaternion has exactly two quaternion square roots, u_3 and $-u_3$ with $(\pm u_3)^2 = q$. Only one of the $\pm u_3$'s at level 3 will have a angle smaller that q with 1, the other one will be $-u_3$ and will have a smaller angle than q with -1.
- This pattern continues with u_{c-1} has exactly two quaternion square roots, u_c and $-u_c$ with $(\pm u_c)^2 = u_{c-1}$. Only one of the $\pm u_c$'s at level c will have a angle smaller that u_{c-1} with 1, the other one will be $-u_c$ and will have a smaller angle than $-u_{c-1}$ with -1.

• If $g_{2^c} = L_{u_c}$, then (g_{2^c}) is a sequence of $2^{c \text{ th}}$ roots of $f = L_{-1}$ defined on a cofinal subset of the naturals with each (g_{2^c}) a smooth root system to the identity.

何 ト イヨ ト イヨ ト

- If $g_{2^c} = L_{u_c}$, then (g_{2^c}) is a sequence of $2^{c \text{ th}}$ roots of $f = L_{-1}$ defined on a cofinal subset of the naturals with each (g_{2^c}) a smooth root system to the identity.
- Hence, we have a case where we have uncountably many different differential equations ξ_q with $\Phi_{q,t=1} = f$.

同 ト イヨ ト イヨ ト ニヨ

- If $g_{2^c} = L_{u_c}$, then (g_{2^c}) is a sequence of $2^{c \text{ th}}$ roots of $f = L_{-1}$ defined on a cofinal subset of the naturals with each (g_{2^c}) a smooth root system to the identity.
- Hence, we have a case where we have uncountably many different differential equations ξ_q with $\Phi_{q,t=1} = f$.
- Note that if q_1 and q_2 are distinct imaginary quaternions with $q_1^2 = q_2^2 = -1$, the the self-diffeomorphism P of S^3 defined by $P(p) = L_{q_2(q_1^{-1})}$ has $DP^{-1} \circ \xi_2 \circ P = \xi_1$, for ξ_i the differential equation determined by $(g_{i,b})$, where $DP : TS^3 \to TS^3$ is the induced map on the tangent bundle.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Lemma 1

Let (g_b) be a root sequence to the identity, let $a_1, a_2 \in \mathbb{Z}$, and let $b_1, b_2 \in \mathbb{Z}^+$. Then $g_{b_2}^{a_2}[g_{b_1}^{a_1}(p)] = (g_{b_1b_2})^{a_1b_2+a_1b_2}(p)]$

「ヨト・ヨト・ヨト

Lemma 1

Let (g_b) be a root sequence to the identity, let $a_1, a_2 \in \mathbb{Z}$, and let $b_1, b_2 \in \mathbb{Z}^+$. Then $g_{b_2}^{a_2}[g_{b_1}^{a_1}(p)] = (g_{b_1b_2})^{a_1b_2+a_1b_2}(p)]$

Proof.

$$\begin{array}{lll} g_{b_2}^{a_2}[g_{b_1}^a(p)] &=& g_{b_1b_2}^{a_2b_1}[g_{b_1b_2}^{a_1b_2}(p)] \text{ by the coherency condition} \\ g_{b_2}^{a_2}[g_{b_1}^a(p)] &=& (g_{b_1b_2})^{a_2b_1+a_1b_2}(p) \text{ by the definition of composition of functions.} \end{array}$$

伺 ト イヨト イヨト

Proof.

(⇒) Suppose $f = \Phi_1$ for Φ_t the flow of a differential equation ξ on M. Define $H : M \times \mathbb{I} \to M$ by $H(p, t) = \Phi(p, 1 - t)$.

伺 ト イヨト イヨト

Proof.

(⇒) Suppose $f = \Phi_1$ for Φ_t the flow of a differential equation ξ on M. Define $H : M \times \mathbb{I} \to M$ by $H(p, t) = \Phi(p, 1 - t)$.

• Then $H(p,0) = \Phi_{1-0}(p) = \Phi_1(p) = f(p)$ and $H(p,1) = \Phi_{1-1}(p) = \Phi_0(p) = id_M(p)$, so f is isotopic to id_M .

伺 とう ほう うちょう

Proof.

(⇒) Suppose $f = \Phi_1$ for Φ_t the flow of a differential equation ξ on M. Define $H : M \times \mathbb{I} \to M$ by $H(p, t) = \Phi(p, 1 - t)$.

- Then $H(p,0) = \Phi_{1-0}(p) = \Phi_1(p) = f(p)$ and $H(p,1) = \Phi_{1-1}(p) = \Phi_0(p) = id_M(p)$, so f is isotopic to id_M .
- Let $b \in \mathbb{Z}^+$ and set $g_b(p) = \Phi_{\frac{1}{b}}(p)$.

何 ト イヨ ト イヨ ト

Proof.

(⇒) Suppose $f = \Phi_1$ for Φ_t the flow of a differential equation ξ on M. Define $H : M \times \mathbb{I} \to M$ by $H(p, t) = \Phi(p, 1 - t)$.

- Then $H(p,0) = \Phi_{1-0}(p) = \Phi_1(p) = f(p)$ and $H(p,1) = \Phi_{1-1}(p) = \Phi_0(p) = id_M(p)$, so f is isotopic to id_M .
- Let $b \in \mathbb{Z}^+$ and set $g_b(p) = \Phi_{\frac{1}{b}}(p)$.
- Then each g_b is isotopic to id_M and $(g_b)^b(p) = \Phi^b_{\frac{1}{b}}(p) = \Phi_{b\frac{1}{b}}(p) = \Phi_1(p) = f(p)$, so each g_b is a " b^{th} root of f".

伺 ト イ ヨ ト イ ヨ ト

• Let
$$b_1, b_2 \in \mathbb{Z}^+$$
. Then
 $g_{b_1}[(g_{b_2})(p)] = \Phi_{\frac{1}{b_1}}[\Phi_{\frac{1}{b_2}}(p)]$
 $= \Phi_{\frac{1}{b_1} + \frac{1}{b_2}}(p)$ as Φ_t is a flow
 $= \Phi_{\frac{1}{b_2} + \frac{1}{b_1}}(p)$
 $= \Phi_{\frac{1}{b_2}}[\Phi_{\frac{1}{b_1}}(p)]$
 $= g_{b_2}[(g_{b_1})(p)]$

so (g_b) obeys the commutativity condition.

,

э

• Let
$$b_1, b_2 \in \mathbb{Z}^+$$
. Then
 $g_{b_1}[(g_{b_2})(p)] = \Phi_{\frac{1}{b_1}}[\Phi_{\frac{1}{b_2}}(p)]$
 $= \Phi_{\frac{1}{b_1} + \frac{1}{b_2}}(p) \text{ as } \Phi_t \text{ is a flow}$
 $= \Phi_{\frac{1}{b_2} + \frac{1}{b_1}}(p)$
 $= \Phi_{\frac{1}{b_2}}[\Phi_{\frac{1}{b_1}}(p)]$
 $= g_{b_2}[(g_{b_1})(p)]$

so (g_b) obeys the commutativity condition.

• Next, for
$$a \in \mathbb{Z}$$
,
 $(g_b)^a(p) = (\Phi_{\frac{1}{b}})^a(p) = \Phi_{\frac{a}{b}}(p)$
 $= \Phi_{\frac{\overline{GCD}(a,b)}{\overline{GCD}(a,b)}}(p)$ as Φ_t is a flow
 $= \left(g_{\frac{b}{GCD}(a,b)}\right)^{\frac{a}{\overline{GCD}(a,b)}}(p)$

so (g_b) obeys the coherency condition.

,

・四・・モ・・モ・・モ

• Finally,
$$\lim_{b\to\infty} (g_b)(p) = \lim_{b\to\infty} \Phi_{\frac{1}{b}}(p) = \Phi_0(p) = \mathrm{id}_M. \blacksquare(\Rightarrow)$$

▲御▶ ▲ 陸▶ ▲ 陸▶

- Finally, $\lim_{b\to\infty} (g_b)(p) = \lim_{b\to\infty} \Phi_{\frac{1}{b}}(p) = \Phi_0(p) = \mathrm{id}_M. \ \blacksquare(\Rightarrow)$
- (⇐) Suppose f is smoothly rootable to the identity. Let (g_b) be a smooth root system to the identity for f.

• • = • • = •

- Finally, $\lim_{b\to\infty} (g_b)(p) = \lim_{b\to\infty} \Phi_{\frac{1}{b}}(p) = \Phi_0(p) = \mathrm{id}_M. \ \blacksquare(\Rightarrow)$
- (⇐) Suppose f is smoothly rootable to the identity. Let (g_b) be a smooth root system to the identity for f.
- Define $\Psi_{\frac{a}{b}}: M \times \mathbb{Q} \to M$ by $\Psi_{\frac{a}{b}}(p) = (g_b)^a(p)$.

• • = • • = •

- Finally, $\lim_{b\to\infty} (g_b)(p) = \lim_{b\to\infty} \Phi_{\frac{1}{b}}(p) = \Phi_0(p) = \mathrm{id}_M. \ \blacksquare(\Rightarrow)$
- (⇐) Suppose f is smoothly rootable to the identity. Let (g_b) be a smooth root system to the identity for f.
- Define $\Psi_{\frac{a}{b}}: M \times \mathbb{Q} \to M$ by $\Psi_{\frac{a}{b}}(p) = (g_b)^a(p)$.
- Then $\Psi_{\frac{a}{b}}(p) = (g_b)^a(p)$ $= \left(g_{\frac{b}{GCD(a,b)}}\right)^{\frac{a}{GCD(a,b)}}(p)$ $\Psi_{\frac{a}{b}}(p) = \Psi_{\frac{a}{GCD(a,b)}}(p)$ by the coherency condition, so $\Psi_{\frac{a}{b}}$ is well-defined.

- Finally, $\lim_{b\to\infty} (g_b)(p) = \lim_{b\to\infty} \Phi_{\frac{1}{b}}(p) = \Phi_0(p) = \mathrm{id}_M. \ \blacksquare(\Rightarrow)$
- (⇐) Suppose f is smoothly rootable to the identity. Let (g_b) be a smooth root system to the identity for f.
- Define $\Psi_{\frac{a}{b}}: M \times \mathbb{Q} \to M$ by $\Psi_{\frac{a}{b}}(p) = (g_b)^a(p)$.
- Then $\Psi_{\frac{a}{b}}(p) = (g_{b})^{a}(p)$ $= \left(g_{\frac{b}{GCD(a,b)}}\right)^{\frac{a}{GCD(a,b)}}(p)$ $\Psi_{\frac{a}{b}}(p) = \Psi_{\frac{a}{GCD(a,b)}}(p)$

by the coherency condition, so $\Psi_{\frac{2}{b}}$ is well-defined.

 Moreover, as (g_b) is a smooth root system to the identity, it is a continuous root system to the identity, so Ψ³/_b extends uniquely to a continuous function Ψ_t : M × ℝ → M.

• Next, as (g_b) is a smooth root system to the identity, $\Psi_t: M \times \mathbb{R} \to M$ is smooth.

э

- Next, as (g_b) is a smooth root system to the identity, $\Psi_t: M \times \mathbb{R} \to M$ is smooth.
- We must show Ψ_t is a flow on M.

伺 ト イヨ ト イヨ ト

- Next, as (g_b) is a smooth root system to the identity, $\Psi_t: M \times \mathbb{R} \to M$ is smooth.
- We must show Ψ_t is a flow on M.

• Note
$$\Psi_0 = \Psi_{\frac{0}{b}} = (g_b)^0 = \mathrm{id}_M.$$

伺 ト イヨ ト イヨ ト

- Next, as (g_b) is a smooth root system to the identity, $\Psi_t: M \times \mathbb{R} \to M$ is smooth.
- We must show Ψ_t is a flow on M.

• Note
$$\Psi_0 = \Psi_{\frac{0}{b}} = (g_b)^0 = \mathrm{id}_M$$
.
• Let $a_1, a_2 \in \mathbb{Z}$ and $b_1, b_2 \in \mathbb{Z}^+$. Then
 $\Psi_{\frac{a_2}{b_2}} \left[\Psi_{\frac{a_1}{b_1}}(p) \right] = (g_{b_1})^{a_1} [(g_{b_2})^{a_2}(p)]$
 $= (g_{b_1b_2})^{a_2b_1+a_1b_2}(p)$ by Lemma 1
 $= \Psi_{\frac{a_2b_1+a_1b_2}{b_1b_2}}(p)$
 $= \Psi_{\frac{a_2b_1}{b_1b_2}+\frac{a_1b_2}{b_1b_2}}(p)$
 $\Psi_{\frac{a_2}{b_2}} \left[\Psi_{\frac{a_1}{b_1}}(p) \right] = \Psi_{\frac{a_2}{b_2}+\frac{a_1}{b_1}}(p)$ by the fact that $\Psi_{\frac{a}{b}}$
is well-defined on \mathbb{Q} .

伺 ト イヨ ト イヨ ト

• It then follows that $\Psi_{t_2}[\Psi_{t_1}(p)] = \Psi_{t_2+t_1}(p)$ for $t_1, t_2 \in \mathbb{R}$ by continuity as (g_b) is a continuous root system to the identity.

- It then follows that $\Psi_{t_2}[\Psi_{t_1}(p)] = \Psi_{t_2+t_1}(p)$ for $t_1, t_2 \in \mathbb{R}$ by continuity as (g_b) is a continuous root system to the identity.
- This shows that Ψ_t is a flow and $f = \Psi_1$. $\blacksquare (\Leftarrow)$

• • = • • = •

- It then follows that $\Psi_{t_2} [\Psi_{t_1}(\rho)] = \Psi_{t_2+t_1}(\rho)$ for $t_1, t_2 \in \mathbb{R}$ by continuity as (g_b) is a continuous root system to the identity.
- This shows that Ψ_t is a flow and $f = \Psi_1$. \blacksquare (\Leftarrow)
- A proof of the fact that for a complete, time-independent vector field ξ, the differential equation ξ inducing Φ_t is given by ξ = ∂/∂t {Φ_t} |^{t=0} may be found in, for instance, [1].

同 ト イヨ ト イヨ ト ニヨ

J. Arango and A. Gómez.

Flows and diffeomorphisms. *Revista Colombiana de Matemáticas*, 32(1):13–27, Jan. 1998.

• • • • • • •

The End

• THE END

Dr. Jeff Rolland A Necessary and Sufficient Condition for a Self-Diffeomorphism of

< ロ > < 部 > < き > < き > ...

æ