More Examples of Pseudo-Collars on High-Dimensional Manifolds

Dr. Jeffrey Rolland

Department of Mathematics Milwaukee School of Engineering

February 03, 2020

Dr. Jeffrey Rolland

• Quillen's plus construction is a way of taking a CW complex or manifold X whose fundamental group G contains a perfect normal subgroup P and creating a new CW complex or manifold X^+ whose fundamental group is simpler, namely Q = G/P

- Quillen's plus construction is a way of taking a CW complex or manifold X whose fundamental group G contains a perfect normal subgroup P and creating a new CW complex or manifold X^+ whose fundamental group is simpler, namely Q = G/P
- If the object is a manifold, the plus construction creates a plus cobordism (W, X, X⁺) between the two manifold with X⁺ → W a simple homotopy equivalence which gives rise to a map f between the two manifolds

- Quillen's plus construction is a way of taking a CW complex or manifold X whose fundamental group G contains a perfect normal subgroup P and creating a new CW complex or manifold X^+ whose fundamental group is simpler, namely Q = G/P
- If the object is a manifold, the plus construction creates a plus cobordism (W, X, X⁺) between the two manifold with X⁺ → W a simple homotopy equivalence which gives rise to a map f between the two manifolds
- If the object is a CW complex, the Plus Construction simply create a map *f* between the two CW complexes

- Quillen's plus construction is a way of taking a CW complex or manifold X whose fundamental group G contains a perfect normal subgroup P and creating a new CW complex or manifold X^+ whose fundamental group is simpler, namely Q = G/P
- If the object is a manifold, the plus construction creates a plus cobordism (W, X, X⁺) between the two manifold with X⁺ → W a simple homotopy equivalence which gives rise to a map f between the two manifolds
- If the object is a CW complex, the Plus Construction simply create a map *f* between the two CW complexes
- In either case, the map f is a $\mathbb{Z}Q$ -homology isomorphism

• In previous work, we had discovered a partial reverse to Quillen's plus construction in the high-dimensional manifold category

 In previous work, we had discovered a partial reverse to Quillen's plus construction in the high-dimensional manifold category

Theorem 1 (R., 2015)

Let M be a manifold of dimension 6 or higher, with $\pi_1(M) \cong Q$. Let K be a finitely presented superperfect group. Let G be a semi-direct product of Q by K, $G = K \rtimes Q$. Then there is a cobordism (W, M, M_-) with $\pi_1(M_-) \cong G$ and $M \hookrightarrow W$ a simple homotopy equivalence

• In previous work, we had discovered a partial reverse to Quillen's plus construction in the high-dimensional manifold category

Theorem 1 (R., 2015)

Let M be a manifold of dimension 6 or higher, with $\pi_1(M) \cong Q$. Let K be a finitely presented superperfect group. Let G be a semi-direct product of Q by K, $G = K \rtimes Q$. Then there is a cobordism (W, M, M_-) with $\pi_1(M_-) \cong G$ and $M \hookrightarrow W$ a simple homotopy equivalence

 (Note that G being a semi-direct product of Q by K, G = K ⋊ Q, means G satisfies 1 → K → G → Q → 1, so G is a group extension of Q by K, with a special condition for how elements of Q multiply elements of K in G)

• In previous work, we had discovered a partial reverse to Quillen's plus construction in the high-dimensional manifold category

Theorem 1 (R., 2015)

Let M be a manifold of dimension 6 or higher, with $\pi_1(M) \cong Q$. Let K be a finitely presented superperfect group. Let G be a semi-direct product of Q by K, $G = K \rtimes Q$. Then there is a cobordism (W, M, M_-) with $\pi_1(M_-) \cong G$ and $M \hookrightarrow W$ a simple homotopy equivalence

- (Note that G being a semi-direct product of Q by K, G = K ⋊ Q, means G satisfies 1 → K → G → Q → 1, so G is a group extension of Q by K, with a special condition for how elements of Q multiply elements of K in G)
- (Semi-direct products are the simplest kind of group extensions; direct products are one example)

• We call (*W*, *M*, *M*₋) a semi-s-cobordism, because it is "half an s-cobordism"

- We call (*W*, *M*, *M*₋) a semi-s-cobordism, because it is "half an s-cobordism"
- Note (W, M_−, M) (read upside-down, with the roles of M and M_− reversed) is a plus cobordism (so (M_−)⁺ ≈ M)

 What we would like to do now is "stack" these semi-s-cobordisms, forming (W₁, M, M₋), (W₂, M₋, M₋₋), and so on, out to infinity

- What we would like to do now is "stack" these semi-s-cobordisms, forming (W₁, M, M₋), (W₂, M₋, M₋₋), and so on, out to infinity
- Gluing W₁ and W₂ together across M₋ and so on produces an (n+1)-dimensional, 1-ended manifold V whose neighborhoods of infinity are pseudo-collared

• Pseudo-collars are generalizations of collar structures on the boundary of a manifold

- Pseudo-collars are generalizations of collar structures on the boundary of a manifold
- The notion of a pseudo-collar originated in Hilbert cube manifold theory, where they were a necessary and sufficient condition for finding a Z-set as the boundary of a manifold

- Pseudo-collars are generalizations of collar structures on the boundary of a manifold
- The notion of a pseudo-collar originated in Hilbert cube manifold theory, where they were a necessary and sufficient condition for finding a \mathcal{Z} -set as the boundary of a manifold
- We would like to produce many examples of open, 1-ended, (n+1)-dimensional pseudo-collared manifolds

- Pseudo-collars are generalizations of collar structures on the boundary of a manifold
- The notion of a pseudo-collar originated in Hilbert cube manifold theory, where they were a necessary and sufficient condition for finding a \mathcal{Z} -set as the boundary of a manifold
- We would like to produce many examples of open, 1-ended, (n+1)-dimensional pseudo-collared manifolds
- We could just keep changing the kernel group K at each stage, but we would like to keep the same kernel group K

- Pseudo-collars are generalizations of collar structures on the boundary of a manifold
- The notion of a pseudo-collar originated in Hilbert cube manifold theory, where they were a necessary and sufficient condition for finding a \mathcal{Z} -set as the boundary of a manifold
- We would like to produce many examples of open, 1-ended, (n+1)-dimensional pseudo-collared manifolds
- We could just keep changing the kernel group K at each stage, but we would like to keep the same kernel group K
- The idea is that there will be infinitely many outer automorphisms, so we can form infinitely many semi-direct products, each with a different outer automorphism

- Pseudo-collars are generalizations of collar structures on the boundary of a manifold
- The notion of a pseudo-collar originated in Hilbert cube manifold theory, where they were a necessary and sufficient condition for finding a \mathcal{Z} -set as the boundary of a manifold
- We would like to produce many examples of open, 1-ended, (n+1)-dimensional pseudo-collared manifolds
- We could just keep changing the kernel group K at each stage, but we would like to keep the same kernel group K
- The idea is that there will be infinitely many outer automorphisms, so we can form infinitely many semi-direct products, each with a different outer automorphism
- This is one advantage of using semi-direct products over direct products

• A subset A of a finitely presented group S is called an <u>unpermutable set</u> if is countably infinite and has the property that if $\phi : K \to K$ is an isomorphism and $\phi(a_i) = a_j^{\pm 1}$, then i = j

- A subset A of a finitely presented group S is called an <u>unpermutable set</u> if is countably infinite and has the property that if $\phi : K \to K$ is an isomorphism and $\phi(a_i) = a_j^{\pm 1}$, then i = j
- A large source of examples of unpermutable sets are fundamental groups of hyperbolic manifolds

- A subset A of a finitely presented group S is called an <u>unpermutable set</u> if is countably infinite and has the property that if $\phi : K \to K$ is an isomorphism and $\phi(a_i) = a_j^{\pm 1}$, then i = j
- A large source of examples of unpermutable sets are fundamental groups of hyperbolic manifolds
- If you take a geodesic loop γ that's non-null-homotopic, then the length of this loop is an invariant of this loop by Mostow Rigidity, so A = {γⁿ | n ∈ ℕ } forms an unpermutable set.

- A subset A of a finitely presented group S is called an <u>unpermutable set</u> if is countably infinite and has the property that if $\phi: K \to K$ is an isomorphism and $\phi(a_i) = a_j^{\pm 1}$, then i = j
- A large source of examples of unpermutable sets are fundamental groups of hyperbolic manifolds
- If you take a geodesic loop γ that's non-null-homotopic, then the length of this loop is an invariant of this loop by Mostow Rigidity, so A = {γⁿ | n ∈ ℕ } forms an unpermutable set.

Theorem 2 (R., 2020)

Let M be a manifold of dimension $n \ge 6$ with fundamental group \mathbb{Z} . Let S be a finitely presented, superperfect, centerless, freely indecomposable, Hopfian, co-Hopfian group with an unpermutable set, and let K = S * S. Then there are uncountably many (n + 1)-dimensional, pseudo-collarable, 1-ended manifolds V with boundary M

• V will break up into semi-s-cobordisms (W_j, M_{j-1}, M_j) , where $G_j \cong S \rtimes G_{j-1}$, $G_j = \pi_1(M_j)$

▶ ★ 문 ► ★ 문 ►

æ

- V will break up into semi-s-cobordisms (W_j, M_{j-1}, M_j) , where $G_j \cong S \rtimes G_{j-1}$, $G_j = \pi_1(M_j)$
- Each G_j will, in fact, be isomorphic to $(S \times S \times \ldots \times S) \rtimes \mathbb{Z}$

- V will break up into semi-s-cobordisms (W_j, M_{j-1}, M_j) , where $G_j \cong S \rtimes G_{j-1}$, $G_j = \pi_1(M_j)$
- Each G_j will, in fact, be isomorphic to $(S \times S \times ... \times S) \rtimes \mathbb{Z}$
- We will produce different G_j's by varying the outer actions, a technical part of semi-direct products, while keeping the quotient group, ℤ, and kernel group, S, essentially constant

- V will break up into semi-s-cobordisms (W_j, M_{j-1}, M_j) , where $G_j \cong S \rtimes G_{j-1}$, $G_j = \pi_1(M_j)$
- Each G_j will, in fact, be isomorphic to $(S \times S \times ... \times S) \rtimes \mathbb{Z}$
- We will produce different G_j's by varying the outer actions, a technical part of semi-direct products, while keeping the quotient group, ℤ, and kernel group, S, essentially constant
- We will produce one V for each $\omega \in \prod_{i=1}^{\infty} \{0, 1\}$

• Of course, it's pretty easy to whip out a 1-ended, pseudo-collarable manifold V: you just keep taking larger and larger G_i's and M_i's and glue the cobordisms together

- Of course, it's pretty easy to whip out a 1-ended, pseudo-collarable manifold V: you just keep taking larger and larger G_j's and M_j's and glue the cobordisms together
- The hard part is proving that the resulting pro-fundamental group systems at infinity are all non-isomorphic

- Of course, it's pretty easy to whip out a 1-ended, pseudo-collarable manifold V: you just keep taking larger and larger G_i's and M_i's and glue the cobordisms together
- The hard part is proving that the resulting pro-fundamental group systems at infinity are all non-isomorphic
- For example, if $Q = \prod_{i=1}^{\infty} \mathbb{Z}$, $K_1 = \mathbb{Z}$, and $K_2 = \mathbb{Z} \times \mathbb{Z}$, then $G_1 = K_1 \times Q$ and $G_2 = K_2 \times Q$ are isomorphic, even though $K_1 \ncong K_2$

æ

・ロト ・厚ト ・ヨト ・ヨト

Lemma 3

Let A, B, C, and D be nontrivial groups and ley $\phi : A \times B \to C * D$ be a epimorphism. Then either $\phi(A \times \{1\})$ is all of C * D and $\phi(\{1\} \times B)$ is trivial or $\phi(A \times \{1\})$ is trivial and $\phi(\{1\} \times B)$ is all of C * D

Lemma 3

Let A, B, C, and D be nontrivial groups and ley $\phi : A \times B \to C * D$ be a epimorphism. Then either $\phi(A \times \{1\})$ is all of C * D and $\phi(\{1\} \times B)$ is trivial or $\phi(A \times \{1\})$ is trivial and $\phi(\{1\} \times B)$ is all of C * D

• Remark This is really the grain of sand that led to the pearl that is the theorem. Everything must commute and the domain, and nothing can commute in the range

Lemma 3

Let A, B, C, and D be nontrivial groups and ley $\phi : A \times B \to C * D$ be a epimorphism. Then either $\phi(A \times \{1\})$ is all of C * D and $\phi(\{1\} \times B)$ is trivial or $\phi(A \times \{1\})$ is trivial and $\phi(\{1\} \times B)$ is all of C * D

- Remark This is really the grain of sand that led to the pearl that is the theorem. Everything must commute and the domain, and nothing can commute in the range
- The proof uses the fact that a free product is never an internal direct product

Lemma 4 (The Straightening-Up Lemma (n = m))

Let n = m, let K be a free product, and let $\psi: K \times K \times \ldots \times K$ (n copies) $\rightarrow K \times K \times \ldots \times K$ (m copies) be an isomorphism. Write $\psi_{i,j}$ for $\pi_{K_j} \circ \psi|_{K_i}$. Then ψ splits as nisomorphisms $\psi_{i,\sigma(i)}$, with σ a permutation, with all other $\psi_{i,j}$'s being the trivial map

Lemma 4 (The Straightening-Up Lemma (n = m))

Let n = m, let K be a free product, and let $\psi: K \times K \times \ldots \times K$ (n copies) $\rightarrow K \times K \times \ldots \times K$ (m copies) be an isomorphism. Write $\psi_{i,j}$ for $\pi_{K_j} \circ \psi|_{K_i}$. Then ψ splits as nisomorphisms $\psi_{i,\sigma(i)}$, with σ a permutation, with all other $\psi_{i,j}$'s being the trivial map

Lemma 5 (The Straightening-Up Corollary (n > m))

Let n > m, let K be a free product of Hopfian groups, and let $\psi : K \times K \times \ldots \times K$ (n copies) $\rightarrow K \times K \times \ldots \times K$ (m copies) be an epimorphism. Write $\psi_{i,j}$ for $\pi_{K_j} \circ \psi|_{K_i}$. Then ψ splits as misomorphisms $\psi_{\sigma^{-1}(i),i}$, with σ a permutation, with all other $\psi_{i,j}$'s being the trivial map

• For the next 2 Lemmas, we have

浸▶ 一座

- For the next 2 Lemmas, we have
- K a free product of 2 copies of the same centerless, superperfect, freely indecomposable, co-Hopfian group S₁ * S₂ (Hopfian for the Corollary) with an unpermutable set set A (chosen as a subset of S₁)

- For the next 2 Lemmas, we have
- K a free product of 2 copies of the same centerless, superperfect, freely indecomposable, co-Hopfian group S₁ * S₂ (Hopfian for the Corollary) with an unpermutable set set A (chosen as a subset of S₁)

•
$$G_1 = (K imes K imes \ldots imes K)
times_{\phi_{u_1}, \phi_{u_2}, \ldots, \phi_{u_n}} \mathbb{Z}$$
 and

- For the next 2 Lemmas, we have
- K a free product of 2 copies of the same centerless, superperfect, freely indecomposable, co-Hopfian group S₁ * S₂ (Hopfian for the Corollary) with an unpermutable set set A (chosen as a subset of S₁)
- $G_1 = (K \times K \times \ldots \times K) \rtimes_{\phi_{u_1}, \phi_{u_2}, \ldots, \phi_{u_n}} \mathbb{Z}$ and
- G₂ = (S × K × ... × K) ⋊<sub>φ_{v1},φ_{v2},...,φ_{vm} ℤ are semi-direct products
 </sub>

- For the next 2 Lemmas, we have
- K a free product of 2 copies of the same centerless, superperfect, freely indecomposable, co-Hopfian group S₁ * S₂ (Hopfian for the Corollary) with an unpermutable set set A (chosen as a subset of S₁)

•
$$G_1 = (K \times K \times \ldots \times K) \rtimes_{\phi_{u_1}, \phi_{u_2}, \ldots, \phi_{u_n}} \mathbb{Z}$$
 and

• where ϕ_{u_i} is the outer action of \mathbb{Z} on K_i given by $\phi_{u_i}(z)(p) = \begin{cases} p & \text{if } p \in S_1 \\ u_i^{-z} p u_i^z & \text{if } p \in S_2 \end{cases}$

- For the next 2 Lemmas, we have
- K a free product of 2 copies of the same centerless, superperfect, freely indecomposable, co-Hopfian group S₁ * S₂ (Hopfian for the Corollary) with an unpermutable set set A (chosen as a subset of S₁)

•
$$G_1 = (K \times K \times \ldots \times K) \rtimes_{\phi_{u_1}, \phi_{u_2}, \ldots, \phi_{u_n}} \mathbb{Z}$$
 and

• $G_2 = (S \times K \times ... \times K) \rtimes_{\phi_{v_1}, \phi_{v_2}, ..., \phi_{v_m}} \mathbb{Z}$ are semi-direct products

• where ϕ_{u_i} is the outer action of \mathbb{Z} on K_i given by $\phi_{u_i}(z)(p) = \begin{cases} p & \text{if } p \in S_1 \\ u_i^{-z} p u_i^z & \text{if } p \in S_2 \end{cases}$

• (This particular kind of outer action is called a partial conjugation)

Lemma 6 (The Conder Isomorphism Lemma (n = m))

Let n = m, and let $\theta : G_1 \to G_2$ be an isomorphism. Then θ restricts to an isomorphism on the commutator subgroup $C = K \times K \times \ldots \times K$, and the K factors which correspond by the Straightening-Up Lemma (n = m) have ϕ_{u_i} 's being determined by the same u_i in the definition of the unpermutable group A

Lemma 6 (The Conder Isomorphism Lemma (n = m))

Let n = m, and let $\theta : G_1 \to G_2$ be an isomorphism. Then θ restricts to an isomorphism on the commutator subgroup $C = K \times K \times \ldots \times K$, and the K factors which correspond by the Straightening-Up Lemma (n = m) have ϕ_{u_i} 's being determined by the same u_i in the definition of the unpermutable group A

Lemma 7 (The Conder Isomorphism Corollary (n > m))

Let n > m, and let $\theta : G_1 \to G_2$ be an epimorphism. Then θ restricts to an epimorphism on the commutator subgroup $C = K \times K \times \ldots \times K$, and the K factors which correspond by the Straightening-Up Corollary (n > m) have ϕ_{u_i} 's being determined by the same u_i in the definition of the unpermutable group A

(⇒) Suppose there is an isomorphism θ between the two extensions. Then θ must preserve the commutator subgroup, a characteristic group, so it induces an automorphism of K₁ × ... × K_n, say ψ. By Lemma 4, θ must send each of the n factors of K₁ × ... × K_n in the domain isomorphically onto exactly one of the n factors of K₁ × ... × K_n in the range. Let σ be the permutation from Lemma 4.

- (⇒) Suppose there is an isomorphism θ between the two extensions. Then θ must preserve the commutator subgroup, a characteristic group, so it induces an automorphism of K₁ × ... × K_n, say ψ. By Lemma 4, θ must send each of the n factors of K₁ × ... × K_n in the domain isomorphically onto exactly one of the n factors of K₁ × ... × K_n in the range. Let σ be the permutation from Lemma 4.
- Also, the associated map to θ on quotient groups must send the infinite cyclic quotient $G_{(k_1,...,k_n)}/(K_1 \times ... \times K_n)$ isomorphically onto the infinite cyclic quotient $G_{(l_i,...,l_n)}/(K_1 \times ... \times K_n)$. So, θ takes the generator, z, of \mathbb{Z} in $G_{(k_1,...,k_n)}$ to the an element cw^e in $G_{(l_i,...,l_n)}$, where c is some element of $K_1 \times ... \times K_n$, w generates the \mathbb{Z} in $G_{(l_1,...,l_n)}$, and e is +1 or -1.

▲圖 ▶ ▲ 理 ▶ ▲ 理 ▶ …

• But also we know that z centralises the factor $S_{i,1}$ in K_i , so its θ -image cw^e must centralize $\theta(S_{i,1}) = \psi(S_{i,1}) = Q_i$, say, in $K_{\sigma(i)}$, the copy of K to which K_i is sent under the isomorphism given by Lemma 4, and act as conjugation by $I_{\sigma(i)}$ on $\theta(S_2) = \psi(S_2) = R_i$, say, in $K_{\sigma(i)}$.

- But also we know that z centralises the factor $S_{i,1}$ in K_i , so its θ -image cw^e must centralize $\theta(S_{i,1}) = \psi(S_{i,1}) = Q_i$, say, in $K_{\sigma(i)}$, the copy of K to which K_i is sent under the isomorphism given by Lemma 4, and act as conjugation by $I_{\sigma(i)}$ on $\theta(S_2) = \psi(S_2) = R_i$, say, in $K_{\sigma(i)}$.
- By the Kurosh Subgroup Theorem, $Q_i = F * B_1^{d_1} * B_2^{d_2} * \ldots * B_j^{d_j}$, where F is free, each $d \in K_{\sigma(i)}$ and $B_j \leq S_{\sigma(i),u_j}$, $u_j \in \{1,2\}$. Since the Abelianization of Q is trivial, we have that F is trivial. As $Q_i \cong S$ and S is freely indecomposable, we must have that j = 1. As S is co-Hopfian, we must have that $B_1 = S_{\sigma(i),u_j}$. Now, this implies that conjugation by c has the same effect as conjugation by w^{-e} on the subgroups Q_i of $K_{\sigma(i)}$, which is isomorphic to $S_{i,1}$, and Q_j of $K_{\sigma(j)}$, which is isomorphic to $S_{j,1}$, for $i \neq j$.

• This implies $Q_i^c = Q_i^{w^{-e}}$ pointwise and $Q_j^c = Q_j^{w^{-e}}$ pointwise; as this would require $c \in K_{\sigma i} \cap K_{\sigma j}$ for $i \neq j$, we conclude c = e. Thus θ takes z to w^e .

- This implies $Q_i^c = Q_i^{w^{-e}}$ pointwise and $Q_j^c = Q_j^{w^{-e}}$ pointwise; as this would require $c \in K_{\sigma i} \cap K_{\sigma j}$ for $i \neq j$, we conclude c = e. Thus θ takes z to w^e .
- So, $Q_i = \theta(S_{i,1}) = S^d_{\sigma(i),k_j}$, with $d \in K_{\sigma(i)}$ and $k_1 \in \{1,2\}$.

• This implies $Q_i^c = Q_i^{w^{-e}}$ pointwise and $Q_j^c = Q_j^{w^{-e}}$ pointwise; as this would require $c \in K_{\sigma i} \cap K_{\sigma j}$ for $i \neq j$, we conclude c = e. Thus θ takes z to w^e .

• So,
$$Q_i = \theta(S_{i,1}) = S^d_{\sigma(i),k_j}$$
, with $d \in K_{\sigma(i)}$ and $k_1 \in \{1,2\}$.

• By a symmetric argument, $R = E * C_1^{f_1} * C_2^{f_2} * \ldots * C_j^{f_j}$, where E is free, each $f \in S_{\sigma(i)}$ and $C_i \leq S_{\sigma(i),v_i}$, $v_i \in \{1,2\}$ and $R = \theta(S_{i,2}) = S_{\sigma(i),l_i}^f$, with $f \in K_{\sigma(i)}$ and $l_i \in \{1,2\}$.

• This implies $Q_i^c = Q_i^{w^{-e}}$ pointwise and $Q_j^c = Q_j^{w^{-e}}$ pointwise; as this would require $c \in K_{\sigma i} \cap K_{\sigma j}$ for $i \neq j$, we conclude c = e. Thus θ takes z to w^e .

• So,
$$Q_i = \theta(S_{i,1}) = S^d_{\sigma(i),k_j}$$
, with $d \in K_{\sigma(i)}$ and $k_1 \in \{1,2\}$.

- By a symmetric argument, $R = E * C_1^{f_1} * C_2^{f_2} * \ldots * C_j^{t_j}$, where E is free, each $f \in S_{\sigma(i)}$ and $C_i \leq S_{\sigma(i),v_i}$, $v_i \in \{1,2\}$ and $R = \theta(S_{i,2}) = S_{\sigma(i),l_i}^f$, with $f \in K_{\sigma(i)}$ and $l_i \in \{1,2\}$.
- Since θ is onto, the restriction of θ to K_i must be onto. If $k_i = l_i$, then the projection onto the $S_{i,r}$ factor of $\theta|_{K_i}$, where $r \in \{1,2\} \setminus \{k_i\}$, would be trivial, and $\theta|_{K_i}$ would not be onto. Thus, $l_i \in \{1,2\} \setminus \{k_i\}$.

 Suppose for some K_i, θ(S_{i,1}) = S^d_{σ(i),2} and θ(S_{i,2}) = S^f_{σ(i),1}. Let x ∈ S_{i,2} be an element other than the identity element and let y = θ(x) ∈ Q. Then

Suppose for some K_i, θ(S_{i,1}) = S^d_{σ(i),2} and θ(S_{i,2}) = S^f_{σ(i),1}. Let x ∈ S_{i,2} be an element other than the identity element and let y = θ(x) ∈ Q. Then
θ(x^z) = θ(x)^{θ(z)}

 Suppose for some K_i, θ(S_{i,1}) = S^d_{σ(i),2} and θ(S_{i,2}) = S^f_{σ(i),1}. Let x ∈ S_{i,2} be an element other than the identity element and let y = θ(x) ∈ Q. Then

•
$$\theta(x^z) = \theta(x)^{\theta(z)}$$

•
$$\theta(x^z) = y^{\theta(z)}$$

 $\theta(x^{u_i}) = y$ as conjugation by $\theta(z)$ must act trivially on Q
 $\theta(x^{u_i}) = \theta(x)$, which shows θ is not 1-1 for all $u_i \in A$ with u_i
not the identity, which contradicts the fact that θ is an
isomorphism.

 Suppose for some K_i, θ(S_{i,1}) = S^d_{σ(i),2} and θ(S_{i,2}) = S^f_{σ(i),1}. Let x ∈ S_{i,2} be an element other than the identity element and let y = θ(x) ∈ Q. Then

•
$$\theta(x^z) = \theta(x)^{\theta(z)}$$

• $\theta(x^z) = y^{\theta(z)}$ $\theta(x^{u_i}) = y$ as conjugation by $\theta(z)$ must act trivially on Q $\theta(x^{u_i}) = \theta(x)$, which shows θ is not 1-1 for all $u_i \in A$ with u_i not the identity, which contradicts the fact that θ is an isomorphism.

• It follows that
$$\theta(S_1) = S_1^d$$
 and $\theta(S_2) = S_2^f$

Now, suppose u_i, v_{σ(i)} ∈ A and θ(u_i) ≠ v_{σ(i)}, say θ(u_i) = q. If x is any element of the S_{i,2} factor in K_i other than the identity, set y = θ(x) = ψ(x). Then

$$\theta(x^z) = \theta(x^{u_i}) = \theta(x)^{\theta(u_i)} = y^q$$

Now, suppose u_i, v_{σ(i)} ∈ A and θ(u_i) ≠ v_{σ(i)}, say θ(u_i) = q. If x is any element of the S_{i,2} factor in K_i other than the identity, set y = θ(x) = ψ(x). Then

$$\theta(x^z) = \theta(x^{u_i}) = \theta(x)^{\theta(u_i)} = y^q$$

while on the other hand,

$$\theta(x^z) = \theta(x)^{\theta(z)} = y^{we} = y^{(v_{\sigma(i)})^e}$$

Now, suppose u_i, v_{σ(i)} ∈ A and θ(u_i) ≠ v_{σ(i)}, say θ(u_i) = q. If x is any element of the S_{i,2} factor in K_i other than the identity, set y = θ(x) = ψ(x). Then

$$\theta(x^z) = \theta(x^{u_i}) = \theta(x)^{\theta(u_i)} = y^q$$

while on the other hand,

$$\theta(x^z) = \theta(x)^{\theta(z)} = y^{we} = y^{(v_{\sigma(i)})^e}$$

• By the uniqueness of normal forms of elements in free products, $q = v^{e}_{\sigma(i)}$

 Finally, if u_i, v_{σ(i)} ∈ A and x is any element of the S_{i,2} factor in K_i other than the identity, set y = θ(x) = ψ(x). Then

$$\theta(x^z) = \theta(x^{u_i}) = \theta(x)^{\theta(u_i)} = y^{\psi(u_i)}$$

 Finally, if u_i, v_{σ(i)} ∈ A and x is any element of the S_{i,2} factor in K_i other than the identity, set y = θ(x) = ψ(x). Then

$$\theta(x^z) = \theta(x^{u_i}) = \theta(x)^{\theta(u_i)} = y^{\psi(u_i)}$$

 But now, ψ(u_i) = (v_{σ(i)})^e; since no isomorphism of S_{i,1} takes any given element of A onto any other element of A or the inverse of any other element of A, we must have θ(u_i) = u_i^{±1}. QED Lemma • This is really the key lemma that changes one to allow groups with unpermutable sets instead of requiring groups with torsion elements of all orders for the kernel groups.

- This is really the key lemma that changes one to allow groups with unpermutable sets instead of requiring groups with torsion elements of all orders for the kernel groups.
- The rest of the proof is the same as in my dissertation.

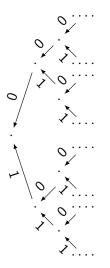
- This is really the key lemma that changes one to allow groups with unpermutable sets instead of requiring groups with torsion elements of all orders for the kernel groups.
- The rest of the proof is the same as in my dissertation.
- In my disseratation, we had one group, Thompson's group V, that met all the requirements for a kernel group and had torsion elements of all orders.

- This is really the key lemma that changes one to allow groups with unpermutable sets instead of requiring groups with torsion elements of all orders for the kernel groups.
- The rest of the proof is the same as in my dissertation.
- In my disseratation, we had one group, Thompson's group V, that met all the requirements for a kernel group and had torsion elements of all orders.
- Already, due to a suggestion by Jason Manning, we have a countable collection of fundamental groups of hyperbolic 3-manifolds that are allowable and meet all the requirements for a kernel group, for each of which we produce an uncountable collection of pseudo-collars.

Now, for $\Omega = \prod_{i=1}^{\infty} \{0, 1\}$, we have the following binary tree

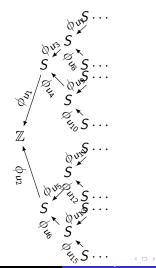
ह⊁ ह

Now, for $\Omega = \prod_{i=1}^{\infty} \{0, 1\}$, we have the following binary tree



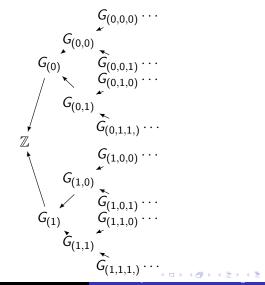
We start at the root of the tree with \mathbb{Z} , and keep blowing this quotient group up by a semi-direct product with S at each node

We start at the root of the tree with \mathbb{Z} , and keep blowing this quotient group up by a semi-direct product with S at each node



This gives rise to binary tree of group extensions ...

This gives rise to binary tree of group extensions ...

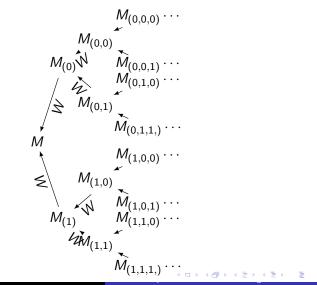


э

... and semi-s-cobordisms

浸▶ Έ

... and semi-s-cobordisms

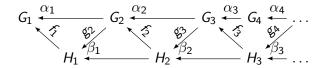


Dr. Jeffrey Rolland

Now, for each ω ∈ Ω, let (ω, n) be the corresponding finite sequence of length n

- Now, for each ω ∈ Ω, let (ω, n) be the corresponding finite sequence of length n
- Corresponding to each ω ∈ Ω, we have an inverse sequence of groups (G_(ω,n), α_(ω,n))

- Now, for each ω ∈ Ω, let (ω, n) be the corresponding finite sequence of length n
- Corresponding to each ω ∈ Ω, we have an inverse sequence of groups (G_(ω,n), α_(ω,n))
- Two inverse sequences are pro-isomorphic if and only if, after passing to subsequences, they may be put into a ladder diagram

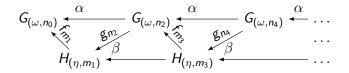


• To finish off the proof, let ω and η be distinct sequences in Ω

- \bullet To finish off the proof, let ω and η be distinct sequences in Ω
- Suppose ω and η agree up to some level n_0

- \bullet To finish off the proof, let ω and η be distinct sequences in Ω
- Suppose ω and η agree up to some level n_0
- Consider the 1-ended, pseudo-collarable ($n+1)\text{-manifolds}~V_\omega$ and V_η

- $\bullet\,$ To finish off the proof, let ω and η be distinct sequences in Ω
- Suppose ω and η agree up to some level n_0
- Consider the 1-ended, pseudo-collarable ($n+1)\text{-manifolds}~V_\omega$ and V_η
- Suppose, after passing to subsequences, we have their pro-fundamental group systems at infinity fitting into a ladder diagram



By passing to a further subsequence if necessary, we may assume $n_0 < m_1 < n_2 < m_3 < \dots$

< /i>
< /i>
< /i>
< /i>
< /i>

]a) k = B

By passing to a further subsequence if necessary, we may assume $n_0 < m_1 < n_2 < m_3 < \dots$

• Now, g_{n_2} fits the form for the Conder Isomorphism Corollary (n > m), so it must be onto m_1 copies of S and corresponding copies of S must have ϕ_{u_i} 's with the same u_i 's in corresponding copies of the S's

By passing to a further subsequence if necessary, we may assume $n_0 < m_1 < n_2 < m_3 < \dots$

- Now, g_{n2} fits the form for the Conder Isomorphism Corollary (n > m), so it must be onto m₁ copies of S and corresponding copies of S must have φ_{ui}'s with the same u_i's in corresponding copies of the S's
- But, ω and η only agree up to n_0 and cannot have ϕ_{u_i} 's with the same u_i 's on the remaining $m_1 n_0$ corresponding copies of S!

By passing to a further subsequence if necessary, we may assume $n_0 < m_1 < n_2 < m_3 < \dots$

- Now, g_{n_2} fits the form for the Conder Isomorphism Corollary (n > m), so it must be onto m_1 copies of S and corresponding copies of S must have ϕ_{u_i} 's with the same u_i 's in corresponding copies of the S's
- But, ω and η only agree up to n_0 and cannot have ϕ_{u_i} 's with the same u_i 's on the remaining $m_1 n_0$ corresponding copies of S!
- This concludes the proof

• THE END

Dr. Jeffrey Rolland

æ

・ロト ・厚ト ・ヨト ・ヨト