Some Constructions of Pseudo-Collarable 1-Ended Manifolds

Jeffrey Rolland

Department of Mathematics Milwaukee School of Engineering

June 09, 2016

Jeffrey Rolland Some Constructions of Pseudo-Collarable 1-Ended Manifolds

• Quillen's plus construction is a way of taking a CW complex or manifold X whose fundamental group G contains a perfect normal subgroup P and creating a new CW complex or manifold X^+ whose fundamental group is simpler, namely Q = G/P

- Quillen's plus construction is a way of taking a CW complex or manifold X whose fundamental group G contains a perfect normal subgroup P and creating a new CW complex or manifold X^+ whose fundamental group is simpler, namely Q = G/P
- If the object is a manifold, the plus construction creates a plus cobordism (W, X, X⁺) between the two manifold with X⁺ → W a simple homotopy equivalence which gives rise to a map f between the two manifolds

- Quillen's plus construction is a way of taking a CW complex or manifold X whose fundamental group G contains a perfect normal subgroup P and creating a new CW complex or manifold X^+ whose fundamental group is simpler, namely Q = G/P
- If the object is a manifold, the plus construction creates a plus cobordism (W, X, X⁺) between the two manifold with X⁺ → W a simple homotopy equivalence which gives rise to a map f between the two manifolds
- If the object is a CW complex, the Plus Construction simply create a map *f* between the two CW complexes

- 4 E b 4 E b

- Quillen's plus construction is a way of taking a CW complex or manifold X whose fundamental group G contains a perfect normal subgroup P and creating a new CW complex or manifold X^+ whose fundamental group is simpler, namely Q = G/P
- If the object is a manifold, the plus construction creates a plus cobordism (W, X, X⁺) between the two manifold with X⁺ → W a simple homotopy equivalence which gives rise to a map f between the two manifolds
- If the object is a CW complex, the Plus Construction simply create a map *f* between the two CW complexes
- In either case, the map f is a $\mathbb{Z}Q$ -homology isomorphism

• In previous work, we had discovered a partial reverse to Quillen's plus construction in the high-dimensional manifold category

• In previous work, we had discovered a partial reverse to Quillen's plus construction in the high-dimensional manifold category

Theorem (R., 2014)

Let M be a manifold of dimension 6 or higher, with $\pi_1(M) \cong Q$. Let K be a finitely presented superperfect group. Let G be a semi-direct product of Q by K, $G = K \rtimes Q$. Then there is a cobordism (W, M, M_-) with $\pi_1(M_-) \cong G$ and $M \hookrightarrow W$ a simple homotopy equivalence

 In previous work, we had discovered a partial reverse to Quillen's plus construction in the high-dimensional manifold category

Theorem (R., 2014)

Let M be a manifold of dimension 6 or higher, with $\pi_1(M) \cong Q$. Let K be a finitely presented superperfect group. Let G be a semi-direct product of Q by K, $G = K \rtimes Q$. Then there is a cobordism (W, M, M_-) with $\pi_1(M_-) \cong G$ and $M \hookrightarrow W$ a simple homotopy equivalence

 (Note that G being a semi-direct product of Q by K, G = K ⋊ Q, means G satisfies 1 → K → G → Q → 1, so G is a group extension of Q by K, with a special condition for how elements of Q multiply elements of K in G)

伺 ト イ ヨ ト イ ヨ ト

• In previous work, we had discovered a partial reverse to Quillen's plus construction in the high-dimensional manifold category

Theorem (R., 2014)

Let M be a manifold of dimension 6 or higher, with $\pi_1(M) \cong Q$. Let K be a finitely presented superperfect group. Let G be a semi-direct product of Q by K, $G = K \rtimes Q$. Then there is a cobordism (W, M, M_-) with $\pi_1(M_-) \cong G$ and $M \hookrightarrow W$ a simple homotopy equivalence

- (Note that G being a semi-direct product of Q by K, G = K ⋊ Q, means G satisfies 1 → K → G → Q → 1, so G is a group extension of Q by K, with a special condition for how elements of Q multiply elements of K in G)
- (Semi-direct products are the simplest kind of group extensions; direct products are one example)

• We call (*W*, *M*, *M*_) a semi-s-cobordism, because it is "half an s-cobordism"

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

٠

• We call (*W*, *M*, *M*₋) a semi-s-cobordism, because it is "half an s-cobordism"

• We call (*W*, *M*, *M*₋) a semi-s-cobordism, because it is "half an s-cobordism"

۲

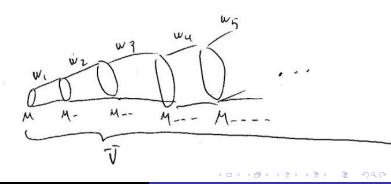
Note (W, M_−, M) (read upside-down, with the roles of M and M_− reversed) is a plus cobordism (so (M_−)⁺ ≈ M)

 What we would like to do now is "stack" these semi-s-cobordisms, forming (W₁, M, M₋), (W₂, M₋, M₋₋), and so on, out to infinity

- What we would like to do now is "stack" these semi-s-cobordisms, forming (W₁, M, M₋), (W₂, M₋, M₋₋), and so on, out to infinity
- Gluing W₁ and W₂ together across M₋ and so on produces an (n+1)-dimesional, 1-ended manifold V whose neighborhoods of infinity are pseudo-collared

۲

- What we would like to do now is "stack" these semi-s-cobordisms, forming (W₁, M, M₋), (W₂, M₋, M₋₋), and so on, out to infinity
- Gluing W₁ and W₂ together across M₋ and so on produces an (n+1)-dimesional, 1-ended manifold V whose neighborhoods of infinity are pseudo-collared



• Pseudo-collars are generalizations of collar structures on the boundary of a manifold

< 3 > < 3

- Pseudo-collars are generalizations of collar structures on the boundary of a manifold
- The notion of a pseudo-collar originated in Hilbert cube manifold theory, where they were a necessary and sufficient condition for finding a Z-set as the boundary of a manifold

- Pseudo-collars are generalizations of collar structures on the boundary of a manifold
- The notion of a pseudo-collar originated in Hilbert cube manifold theory, where they were a necessary and sufficient condition for finding a \mathcal{Z} -set as the boundary of a manifold
- We would like to produce many examples of open, 1-ended, (n+1)-dimensional pseudo-collared manifolds

- Pseudo-collars are generalizations of collar structures on the boundary of a manifold
- The notion of a pseudo-collar originated in Hilbert cube manifold theory, where they were a necessary and sufficient condition for finding a \mathcal{Z} -set as the boundary of a manifold
- We would like to produce many examples of open, 1-ended, (n+1)-dimensional pseudo-collared manifolds
- We could just keep changing the kernel group K at each stage, but we would like to keep the same kernel group K

- Pseudo-collars are generalizations of collar structures on the boundary of a manifold
- The notion of a pseudo-collar originated in Hilbert cube manifold theory, where they were a necessary and sufficient condition for finding a \mathcal{Z} -set as the boundary of a manifold
- We would like to produce many examples of open, 1-ended, (n+1)-dimensional pseudo-collared manifolds
- We could just keep changing the kernel group K at each stage, but we would like to keep the same kernel group K
- The idea is that there will be infinitely many outer automorphisms, so we can form infinitely many semi-direct products, each with a different outer automorphism

ゆ く き と く ゆ と

- Pseudo-collars are generalizations of collar structures on the boundary of a manifold
- The notion of a pseudo-collar originated in Hilbert cube manifold theory, where they were a necessary and sufficient condition for finding a Z-set as the boundary of a manifold
- We would like to produce many examples of open, 1-ended, (n+1)-dimensional pseudo-collared manifolds
- We could just keep changing the kernel group K at each stage, but we would like to keep the same kernel group K
- The idea is that there will be infinitely many outer automorphisms, so we can form infinitely many semi-direct products, each with a different outer automorphism
- This is one advantage of using semi-direct products over direct products

伺 ト く ヨ ト く ヨ ト

A finitely presented group P is called <u>allowable</u> if it contains a countably infinite group A = {a_n | n ∈ ℕ} with the property that if φ : K → K is an isomorphism and φ(a_i) = a_j^{±1}, then i = j

- A finitely presented group P is called <u>allowable</u> if it contains a countably infinite group $A = \{a_n \mid n \in \mathbb{N}\}$ with the property that if $\phi : K \to K$ is an isomorphism and $\phi(a_i) = a_j^{\pm 1}$, then i = j
- A large source of examples of allowable groups are fundamental groups of hyperbolic manifolds

- A finitely presented group *P* is called <u>allowable</u> if it contains a countably infinite group $A = \{a_n \mid n \in \mathbb{N}\}$ with the property that if $\phi : K \to K$ is an isomorphism and $\phi(a_i) = a_j^{\pm 1}$, then i = j
- A large source of examples of allowable groups are fundamental groups of hyperbolic manifolds
- If you take a geodesic loop γ that's non-null-homotopic, then the length of this loop is an invariant of this loop by Mostow Rigidity, so A = {γⁿ | n ∈ N } forms a set A from the definition from allowable group

- A finitely presented group *P* is called <u>allowable</u> if it contains a countably infinite group $A = \{a_n \mid n \in \mathbb{N}\}$ with the property that if $\phi : K \to K$ is an isomorphism and $\phi(a_i) = a_j^{\pm 1}$, then i = j
- A large source of examples of allowable groups are fundamental groups of hyperbolic manifolds
- If you take a geodesic loop γ that's non-null-homotopic, then the length of this loop is an invariant of this loop by Mostow Rigidity, so A = {γⁿ | n ∈ N } forms a set A from the definition from allowable group

Theorem (R., 2016)

Let M be a manifold of dimension $n \ge 6$ with fundamental group \mathbb{Z} . Let P be a finitely presented, allowable, superperfect, centerless, Hopfian group, and let S = P * P. Then there are uncountably many (n + 1)-dimensional, pseudo-collarable, 1-ended manifolds V with boundary M

• V will break up into semi-s-cobordisms (W_j, M_{j-1}, M_j) , where $G_j \cong S \rtimes G_{j-1}$, $G_j = \pi_1(M_j)$

-

- V will break up into semi-s-cobordisms (W_j, M_{j-1}, M_j) , where $G_j \cong S \rtimes G_{j-1}$, $G_j = \pi_1(M_j)$
- Each G_j will, in fact, be isomorphic to $(S \times S \times ... \times S) \rtimes \mathbb{Z}$

- V will break up into semi-s-cobordisms (W_j, M_{j-1}, M_j) , where $G_j \cong S \rtimes G_{j-1}$, $G_j = \pi_1(M_j)$
- Each G_j will, in fact, be isomorphic to $(S \times S \times ... \times S) \rtimes \mathbb{Z}$
- We will produce different G_j's by varying the outer actions, a technical part of semi-direct products, while keeping the quotient group, ℤ, and kernel group, S, essentially constant

- V will break up into semi-s-cobordisms (W_j, M_{j-1}, M_j) , where $G_j \cong S \rtimes G_{j-1}$, $G_j = \pi_1(M_j)$
- Each G_j will, in fact, be isomorphic to $(S \times S \times ... \times S) \rtimes \mathbb{Z}$
- We will produce different G_j's by varying the outer actions, a technical part of semi-direct products, while keeping the quotient group, ℤ, and kernel group, S, essentially constant
- We will produce one V for each $\omega \in \prod_{i=1}^{\infty} \{0, 1\}$

• Of course, it's pretty easy to whip out a 1-ended, pseudo-collarable manifold V: you just keep taking larger and larger G_i's and M_i's and glue the cobordisms together

- Of course, it's pretty easy to whip out a 1-ended, pseudo-collarable manifold V: you just keep taking larger and larger G_j's and M_j's and glue the cobordisms together
- The hard part is proving that the resulting pro-fundamental group systems at infinity are all non-isomorphic

- Of course, it's pretty easy to whip out a 1-ended, pseudo-collarable manifold V: you just keep taking larger and larger G_i's and M_i's and glue the cobordisms together
- The hard part is proving that the resulting pro-fundamental group systems at infinity are all non-isomorphic
- For example, if $Q = \prod_{i=1}^{\infty} \mathbb{Z}$, $K_1 = \mathbb{Z}$, and $K_2 = \mathbb{Z} \times \mathbb{Z}$, then $G_1 = K_1 \times Q$ and $G_2 = K_2 \times Q$ are isomorphic, even though $K_1 \ncong K_2$

→ 3 → 4 3

Lemma

Let A, B, C, and D be nontrivial groups and ley $\phi : A \times B \to C * D$ be a epimorphism. Then either $\phi(A \times \{1\})$ is all of C * D and $\phi(\{1\} \times B)$ is trivial or $\phi(A \times \{1\})$ is trivial and $\phi(\{1\} \times B)$ is all of C * D

Lemma

Let A, B, C, and D be nontrivial groups and ley $\phi : A \times B \to C * D$ be a epimorphism. Then either $\phi(A \times \{1\})$ is all of C * D and $\phi(\{1\} \times B)$ is trivial or $\phi(A \times \{1\})$ is trivial and $\phi(\{1\} \times B)$ is all of C * D

• Remark This is really the grain of sand that led to the pearl that is the theorem. Everything must commute and the domain, and nothing can commute in the range

Lemma

Let A, B, C, and D be nontrivial groups and ley $\phi : A \times B \to C * D$ be a epimorphism. Then either $\phi(A \times \{1\})$ is all of C * D and $\phi(\{1\} \times B)$ is trivial or $\phi(A \times \{1\})$ is trivial and $\phi(\{1\} \times B)$ is all of C * D

- Remark This is really the grain of sand that led to the pearl that is the theorem. Everything must commute and the domain, and nothing can commute in the range
- The proof uses the fact that a free product is never an internal direct product

Lemma (The Straightening-Up Lemma (n = m))

Let n = m, let S be a free product, and let $\psi: S \times S \times \ldots \times S$ (n copies) $\rightarrow S \times S \times \ldots \times S$ (m copies) be an isomorphism. Write $\psi_{i,j}$ for $\pi_{S_j} \circ \psi|_{S_i}$. Then ψ splits as nisomorphisms $\psi_{i,\sigma(i)}$, with σ a permutation, with all other $\psi_{i,j}$'s being the trivial map

Lemma (The Straightening-Up Lemma (n = m))

Let n = m, let S be a free product, and let $\psi: S \times S \times \ldots \times S$ (n copies) $\rightarrow S \times S \times \ldots \times S$ (m copies) be an isomorphism. Write $\psi_{i,j}$ for $\pi_{S_j} \circ \psi|_{S_i}$. Then ψ splits as nisomorphisms $\psi_{i,\sigma(i)}$, with σ a permutation, with all other $\psi_{i,j}$'s being the trivial map

Lemma (The Straightening-Up Corollary (n > m))

Let n > m, let S be a Hopfian free product, and let $\psi : S \times S \times \ldots \times S$ (n copies) $\rightarrow S \times S \times \ldots \times S$ (m copies) be an epimorphism. Write $\psi_{i,j}$ for $\pi_{S_j} \circ \psi|_{S_i}$. Then ψ splits as misomorphisms $\psi_{\sigma^{-1}(i),i}$, with σ a permutation, with all other $\psi_{i,j}$'s being the trivial map

・ 同 ト ・ ヨ ト ・ ヨ ト

• For the next 2 Lemmas, we have

< ∃ →

э

- For the next 2 Lemmas, we have
- S a free product of 2 copies of the same group allowable, centerless, superperfect $K_1 * K_2$ (Hopfian for the Corollary) with a countably infinite set A as in the definition of allowable group (all chosen from K_1)

- For the next 2 Lemmas, we have
- S a free product of 2 copies of the same group allowable, centerless, superperfect K₁ * K₂ (Hopfian for the Corollary) with a countably infinite set A as in the definition of allowable group (all chosen from K₁)

•
$$G_1 = (S \times S \times \ldots \times S) \rtimes_{\phi_{u_1}, \phi_{u_2}, \ldots, \phi_{u_n}} \mathbb{Z}$$
 and

- For the next 2 Lemmas, we have
- S a free product of 2 copies of the same group allowable, centerless, superperfect K₁ * K₂ (Hopfian for the Corollary) with a countably infinite set A as in the definition of allowable group (all chosen from K₁)

•
$$G_1 = (S \times S \times \ldots \times S) \rtimes_{\phi_{u_1}, \phi_{u_2}, \ldots, \phi_{u_n}} \mathbb{Z}$$
 and

G₂ = (S × S × ... × S) ⋊_{φv1},φv2</sub>,...,φvm ℤ are semi-direct products

- For the next 2 Lemmas, we have
- S a free product of 2 copies of the same group allowable, centerless, superperfect K₁ * K₂ (Hopfian for the Corollary) with a countably infinite set A as in the definition of allowable group (all chosen from K₁)

•
$$G_1 = (S \times S \times \ldots \times S) \rtimes_{\phi_{u_1}, \phi_{u_2}, \ldots, \phi_{u_n}} \mathbb{Z}$$
 and

• where ϕ_{u_i} is the outer action of \mathbb{Z} on S given by $\phi_{u_i}(z)(p) = \begin{cases} p & \text{if } k \in P_1 \\ u_i^{-z} p u_i^z & \text{if } p \in P_2 \end{cases}$

- For the next 2 Lemmas, we have
- S a free product of 2 copies of the same group allowable, centerless, superperfect K₁ * K₂ (Hopfian for the Corollary) with a countably infinite set A as in the definition of allowable group (all chosen from K₁)

•
$$G_1 = (S \times S \times \ldots \times S) \rtimes_{\phi_{u_1}, \phi_{u_2}, \ldots, \phi_{u_n}} \mathbb{Z}$$
 and

• $G_2 = (S \times S \times ... \times S) \rtimes_{\phi_{v_1}, \phi_{v_2},...,\phi_{v_m}} \mathbb{Z}$ are semi-direct products

• where ϕ_{u_i} is the outer action of \mathbb{Z} on S given by $\phi_{u_i}(z)(p) = \begin{cases} p & \text{if } k \in P_1 \\ u_i^{-z} p u_i^z & \text{if } p \in P_2 \end{cases}$

• (This particular kind of outer action is called a partial conjugation)

Lemma (The Conder Isomorphism Lemma (n = m))

Let n = m, and let $\theta : G_1 \to G_2$ be an isomorphism. Then θ restricts to an isomorphism on the commutator subgroup $K = S \times S \times \ldots \times S$, and S factors which correspond by the Straightening-Up Lemma (n = m) have ϕ_{u_i} 's being the same u_i in the definition of allowable group

Lemma (The Conder Isomorphism Lemma (n = m))

Let n = m, and let $\theta : G_1 \to G_2$ be an isomorphism. Then θ restricts to an isomorphism on the commutator subgroup $K = S \times S \times \ldots \times S$, and S factors which correspond by the Straightening-Up Lemma (n = m) have ϕ_{u_i} 's being the same u_i in the definition of allowable group

Lemma (The Conder Isomorphism Corollary (n > m))

Let n > m, and let $\theta : G_1 \to G_2$ be an epimorphism. Then θ restricts to an epimorphism on the commutator subgroup $K = S \times S \times \ldots \times S$, and S factors which correspond by the Straightening-Up Corollary (n > m) have ϕ_{u_i} 's being the same u_i in the definition of allowable group

< 同 > < 回 > < 回 >

• This is really the key lemma that changes in requiring allowable groups instead of groups with torsion elements of all orders

- This is really the key lemma that changes in requiring allowable groups instead of groups with torsion elements of all orders
- The rest of the proof is the same as in my dissertation

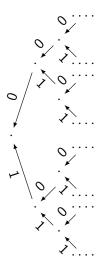
- This is really the key lemma that changes in requiring allowable groups instead of groups with torsion elements of all orders
- The rest of the proof is the same as in my dissertation
- In my disseratation, we had one group, Thompson's group V, that met all the requirements for a kernel group and had torsion elements of all orders

- This is really the key lemma that changes in requiring allowable groups instead of groups with torsion elements of all orders
- The rest of the proof is the same as in my dissertation
- In my disseratation, we had one group, Thompson's group V, that met all the requirements for a kernel group and had torsion elements of all orders
- Already, due to a suggestion by Jason Manning, we have a countable collection of fundamental groups of hyperbolic 3-manifolds that are allowable and meet all the requirements for a kernel group, for each of which we produce an uncountable collection of pseudo-collars

Now, for $\Omega = \prod_{i=1}^{\infty} \{0,1\}$, we have the following binary tree

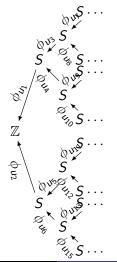
글 🖌 🖌 글 🕨

Now, for $\Omega = \prod_{i=1}^{\infty} \{0, 1\}$, we have the following binary tree



We start at the root of the tree with \mathbb{Z} , and keep blowing this quotient group up by a semi-direct product with S at each node

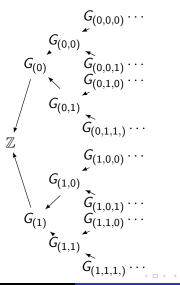
We start at the root of the tree with \mathbb{Z} , and keep blowing this quotient group up by a semi-direct product with S at each node



This gives rise to binary tree of group extensions ...

-

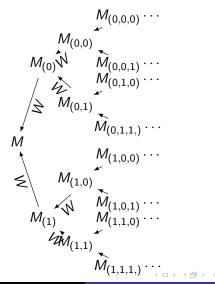
This gives rise to binary tree of group extensions ...



... and semi-s-cobordisms

Image: Image:

... and semi-s-cobordisms

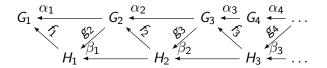


Now, for each ω ∈ Ω, let (ω, n) be the corresponding finite sequence of length n

(E)

- Now, for each ω ∈ Ω, let (ω, n) be the corresponding finite sequence of length n
- Corresponding to each ω ∈ Ω, we have an inverse sequence of groups (G_(ω,n), α_(ω,n))

- Now, for each ω ∈ Ω, let (ω, n) be the corresponding finite sequence of length n
- Corresponding to each ω ∈ Ω, we have an inverse sequence of groups (G_(ω,n), α_(ω,n))
- Two inverse sequences are pro-isomorphic if and only if, after passing to subsequences, they may be put into a ladder diagram



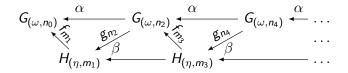
• To finish off the proof, let ω and η be distinct sequences in Ω

(E)

- \bullet To finish off the proof, let ω and η be distinct sequences in Ω
- Suppose ω and η agree up to some level n_0

- $\bullet\,$ To finish off the proof, let ω and η be distinct sequences in Ω
- Suppose ω and η agree up to some level n_0
- Consider the 1-ended, pseudo-collarable ($n+1)\text{-manifolds}~V_\omega$ and V_η

- $\bullet\,$ To finish off the proof, let ω and η be distinct sequences in Ω
- Suppose ω and η agree up to some level n_0
- Consider the 1-ended, pseudo-collarable ($n+1)\text{-manifolds}~V_\omega$ and V_η
- Suppose, after passing to subsequences, we have their pro-fundamental group systems at infinity fitting into a ladder diagram



By passing to a further subsequence if necessary, we may assume $n_0 < m_1 < n_2 < m_3 < \dots$

By passing to a further subsequence if necessary, we may assume $n_0 < m_1 < n_2 < m_3 < \dots$

• Now, g_{n_2} fits the form for the Conder Isomorphism Corollary (n > m), so it must be onto m_1 copies of S and corresponding copies of S must have ϕ_{u_i} 's with the same u_i 's in corresponding copies of the S's

By passing to a further subsequence if necessary, we may assume $n_0 < m_1 < n_2 < m_3 < \dots$

- Now, g_{n_2} fits the form for the Conder Isomorphism Corollary (n > m), so it must be onto m_1 copies of S and corresponding copies of S must have ϕ_{u_i} 's with the same u_i 's in corresponding copies of the S's
- But, ω and η only agree up to n_0 and cannot have ϕ_{u_i} 's with the same u_i 's on the remaining $m_1 n_0$ corresponding copies of S!

By passing to a further subsequence if necessary, we may assume $n_0 < m_1 < n_2 < m_3 < \dots$

- Now, g_{n_2} fits the form for the Conder Isomorphism Corollary (n > m), so it must be onto m_1 copies of S and corresponding copies of S must have ϕ_{u_i} 's with the same u_i 's in corresponding copies of the S's
- But, ω and η only agree up to n_0 and cannot have ϕ_{u_i} 's with the same u_i 's on the remaining $m_1 n_0$ corresponding copies of S!
- This concludes the proof

• THE END

Jeffrey Rolland Some Constructions of Pseudo-Collarable 1-Ended Manifolds

□ ▶ < E ▶ < E ▶

э