# Some Results on Pseudo-Collar Structures on High-Dimensional Manifolds

#### Jeffrey Rolland

Department of Mathematical Sciences University of Wisconsin–Milwaukee

January 21, 2015

Jeffrey Rolland Some Results on Pseudo-Collar Structures on High-Dimensional

A B > A B >

• Quillen's plus construction is a way of taking a CW complex or manifold X whose fundamental group G contains a perfect normal subgroup P and creating a new CW complex or manifold  $X^+$  whose fundamental group is simpler, namely Q = G/P

- Quillen's plus construction is a way of taking a CW complex or manifold X whose fundamental group G contains a perfect normal subgroup P and creating a new CW complex or manifold  $X^+$  whose fundamental group is simpler, namely Q = G/P
- If the object is a manifold, the plus construction creates a plus cobordism (W, X, X<sup>+</sup>) between the two manifold with X<sup>+</sup> → W a simple homotopy equivalence which gives rise to a map f between the two manifolds

伺 と く ヨ と く ヨ と … ヨ

- Quillen's plus construction is a way of taking a CW complex or manifold X whose fundamental group G contains a perfect normal subgroup P and creating a new CW complex or manifold  $X^+$  whose fundamental group is simpler, namely Q = G/P
- If the object is a manifold, the plus construction creates a plus cobordism (W, X, X<sup>+</sup>) between the two manifold with X<sup>+</sup> → W a simple homotopy equivalence which gives rise to a map f between the two manifolds
- If the object is a CW complex, the Plus Construction simply create a map *f* between the two CW complexes

同下 イヨト イヨト ニヨ

- Quillen's plus construction is a way of taking a CW complex or manifold X whose fundamental group G contains a perfect normal subgroup P and creating a new CW complex or manifold  $X^+$  whose fundamental group is simpler, namely Q = G/P
- If the object is a manifold, the plus construction creates a plus cobordism (W, X, X<sup>+</sup>) between the two manifold with X<sup>+</sup> → W a simple homotopy equivalence which gives rise to a map f between the two manifolds
- If the object is a CW complex, the Plus Construction simply create a map *f* between the two CW complexes
- In either case, the map f is a  $\mathbb{Z}Q$ -homology isomorphism

・同・ ・ヨ・ ・ヨ・ ・ヨ

• What we have discovered is a theory of a Geometric Reverse to Quillen's Plus Construction.

- What we have discovered is a theory of a Geometric Reverse to Quillen's Plus Construction.
- Specifically, given a closed manifold N with fundamental group  $Q = \pi_1(N)$  and a f.p. superperfect group S, we construct a compact 1-sided s-cobordism W whose left-hand boundary component is N and whose right-hand boundary component is a closed manifold  $N_-$  whose fundamental group G is a semi-direct product of Q by K,  $G = S \rtimes Q$

- What we have discovered is a theory of a Geometric Reverse to Quillen's Plus Construction.
- Specifically, given a closed manifold N with fundamental group  $Q = \pi_1(N)$  and a f.p. superperfect group S, we construct a compact 1-sided s-cobordism W whose left-hand boundary component is N and whose right-hand boundary component is a closed manifold  $N_-$  whose fundamental group G is a semi-direct product of Q by K,  $G = S \rtimes Q$
- (This means G satisfies 1 → S → G → Q → 1, so G is a group extension of Q by S, with a special condition for how elements of Q multiply elements of S in G)

伺 と く ヨ と く ヨ と

- What we have discovered is a theory of a Geometric Reverse to Quillen's Plus Construction.
- Specifically, given a closed manifold N with fundamental group  $Q = \pi_1(N)$  and a f.p. superperfect group S, we construct a compact 1-sided s-cobordism W whose left-hand boundary component is N and whose right-hand boundary component is a closed manifold  $N_-$  whose fundamental group G is a semi-direct product of Q by K,  $G = S \rtimes Q$
- (This means G satisfies 1 → S → G → Q → 1, so G is a group extension of Q by S, with a special condition for how elements of Q multiply elements of S in G)
- (Semi-direct products are the simplest kind of group extensions; They are the split-exact extensions. Direct products are one example)

(4月) (日) (日) 日

- What we have discovered is a theory of a Geometric Reverse to Quillen's Plus Construction.
- Specifically, given a closed manifold N with fundamental group  $Q = \pi_1(N)$  and a f.p. superperfect group S, we construct a compact 1-sided s-cobordism W whose left-hand boundary component is N and whose right-hand boundary component is a closed manifold  $N_-$  whose fundamental group G is a semi-direct product of Q by K,  $G = S \rtimes Q$
- (This means G satisfies 1 → S → G → Q → 1, so G is a group extension of Q by S, with a special condition for how elements of Q multiply elements of S in G)
- (Semi-direct products are the simplest kind of group extensions; They are the split-exact extensions. Direct products are one example)
- The cobordism (W, N, N<sub>−</sub>) is has π<sub>1</sub>(N) ≅ Q, π<sub>1</sub>(N<sub>−</sub>) ≅ G, and N ↔ W a simple homotopy equivalence

• We call (*W*, *N*, *N*\_) a 1-sided s-cobordism, or sometimes a semi-s-cobordism, because it is "half an s-cobordism"

• We call (*W*, *N*, *N*\_) a 1-sided s-cobordism, or sometimes a semi-s-cobordism, because it is "half an s-cobordism"



• We call (*W*, *N*, *N*\_) a 1-sided s-cobordism, or sometimes a semi-s-cobordism, because it is "half an s-cobordism"



#### ٩

Note (W, N<sub>−</sub>, N) (read upside-down, with the roles of N and N<sub>−</sub> reversed) is also a 1-sided s-cobordims, called a plus cobordism (so (N<sub>−</sub>)<sup>+</sup> ≈ N)

• For the rest of this talk, all mflds are assumed to be orientable.

#### Theorem (R., 2009)

Let  $n \ge 6$ . Let N be a closed n-manifold with  $Q = \pi_1(N)$ . Let S be f.p. and superperfect. Then there exists a cpt n-dimensional 1-sided h-cobordism (W, N, M) with left-hand bdy N and with right-hand bdy M having  $\pi_1(M) \cong G$ , where G is a gp extension of Q by S with trivial second homology elt and with  $N \hookrightarrow W$  a simple homotopy equivalence.

 What we did next was to "stack" these 1-sided s-cobordisms, forming (W<sub>1</sub>, N, N<sub>-</sub>), (W<sub>2</sub>, N<sub>-</sub>, N<sub>--</sub>), and so on, out to infinity

伺 ト く ヨ ト く ヨ ト

3

- What we did next was to "stack" these 1-sided s-cobordisms, forming (W<sub>1</sub>, N, N<sub>-</sub>), (W<sub>2</sub>, N<sub>-</sub>, N<sub>--</sub>), and so on, out to infinity
- Gluing W<sub>1</sub> and W<sub>2</sub> together across N<sub>-</sub> and so on produces an (n+1)-dimesional, 1-ended manifold V whose has neighborhoods of infinity that are pseudo-collars

伺 と く ヨ と く ヨ と … ヨ

۲

- What we did next was to "stack" these 1-sided s-cobordisms, forming (W<sub>1</sub>, N, N<sub>-</sub>), (W<sub>2</sub>, N<sub>-</sub>, N<sub>--</sub>), and so on, out to infinity
- Gluing W<sub>1</sub> and W<sub>2</sub> together across N<sub>-</sub> and so on produces an (n+1)-dimesional, 1-ended manifold V whose has neighborhoods of infinity that are pseudo-collars



Jeffrey Rolland Some Results on Pseudo-Collar Structures on High-Dimensional

• Pseudo-collars are generalizations of collar structures on the boundary of a manifold

A B > A B >

- Pseudo-collars are generalizations of collar structures on the boundary of a manifold
- A homotopy collar is a neighborhood of infinity U with  $\partial U \hookrightarrow U$  a homotopy equivalence

A B M A B M

- Pseudo-collars are generalizations of collar structures on the boundary of a manifold
- A homotopy collar is a neighborhood of infinity U with  $\partial U \hookrightarrow U$  a homotopy equivalence
- A pseudo-collar is a neighborhood of infinity that admits arbitrarily small homotopy collar neighborhoods of infinity

(\* ) \* ) \* ) \* )

- Pseudo-collars are generalizations of collar structures on the boundary of a manifold
- A homotopy collar is a neighborhood of infinity U with  $\partial U \hookrightarrow U$  a homotopy equivalence
- A pseudo-collar is a neighborhood of infinity that admits arbitrarily small homotopy collar neighborhoods of infinity
- We would like to produce many examples of open, 1-ended, (n+1)-dimensional pseudo-collared manifolds

伺 と く ヨ と く ヨ と

- Pseudo-collars are generalizations of collar structures on the boundary of a manifold
- A homotopy collar is a neighborhood of infinity U with  $\partial U \hookrightarrow U$  a homotopy equivalence
- A pseudo-collar is a neighborhood of infinity that admits arbitrarily small homotopy collar neighborhoods of infinity
- We would like to produce many examples of open, 1-ended, (n+1)-dimensional pseudo-collared manifolds
- We could just keep changing the kernel group S at each stage, but we would like to keep the same kernel group S

伺 と く ヨ と く ヨ と

- Pseudo-collars are generalizations of collar structures on the boundary of a manifold
- A homotopy collar is a neighborhood of infinity U with  $\partial U \hookrightarrow U$  a homotopy equivalence
- A pseudo-collar is a neighborhood of infinity that admits arbitrarily small homotopy collar neighborhoods of infinity
- We would like to produce many examples of open, 1-ended, (n+1)-dimensional pseudo-collared manifolds
- We could just keep changing the kernel group S at each stage, but we would like to keep the same kernel group S
- The idea is that there will be infinitely many outer automorphisms, so we can form infinitely many semi-direct products, each with a different outer automorphism

・ 戸 ト ・ ヨ ト ・ ヨ ト

- Pseudo-collars are generalizations of collar structures on the boundary of a manifold
- A homotopy collar is a neighborhood of infinity U with  $\partial U \hookrightarrow U$  a homotopy equivalence
- A pseudo-collar is a neighborhood of infinity that admits arbitrarily small homotopy collar neighborhoods of infinity
- We would like to produce many examples of open, 1-ended, (n+1)-dimensional pseudo-collared manifolds
- We could just keep changing the kernel group S at each stage, but we would like to keep the same kernel group S
- The idea is that there will be infinitely many outer automorphisms, so we can form infinitely many semi-direct products, each with a different outer automorphism
- This is one advantage of using semi-direct products over direct products

Let M be a manifold of dimension  $n \ge 6$  with fundamental group  $\mathbb{Z}$ . Let P be a finitely presented, superperfect, centerless, Hopfian group with torsion elements of infinitely many different orders, and let S = P \* P. Then there are uncountably many (n + 1)-dimensional, pseudo-collarable, 1-ended manifolds V with boundary M

Let M be a manifold of dimension  $n \ge 6$  with fundamental group  $\mathbb{Z}$ . Let P be a finitely presented, superperfect, centerless, Hopfian group with torsion elements of infinitely many different orders, and let S = P \* P. Then there are uncountably many (n + 1)-dimensional, pseudo-collarable, 1-ended manifolds V with boundary M

• V will break up into semi-s-cobordisms  $(W_j, M_{j-1}, M_j)$ , where  $G_j \cong S \rtimes G_{j-1}$ ,  $G_j = \pi_1(M_j)$ 

伺 ト く ヨ ト く ヨ ト

Let M be a manifold of dimension  $n \ge 6$  with fundamental group  $\mathbb{Z}$ . Let P be a finitely presented, superperfect, centerless, Hopfian group with torsion elements of infinitely many different orders, and let S = P \* P. Then there are uncountably many (n + 1)-dimensional, pseudo-collarable, 1-ended manifolds V with boundary M

- V will break up into semi-s-cobordisms  $(W_j, M_{j-1}, M_j)$ , where  $G_j \cong S \rtimes G_{j-1}$ ,  $G_j = \pi_1(M_j)$
- Each  $G_j$  will, in fact, be isomorphic to  $(S \times S \times \ldots \times S) \rtimes \mathbb{Z}$

伺 ト く ヨ ト く ヨ ト

Let M be a manifold of dimension  $n \ge 6$  with fundamental group  $\mathbb{Z}$ . Let P be a finitely presented, superperfect, centerless, Hopfian group with torsion elements of infinitely many different orders, and let S = P \* P. Then there are uncountably many (n + 1)-dimensional, pseudo-collarable, 1-ended manifolds V with boundary M

- V will break up into semi-s-cobordisms  $(W_j, M_{j-1}, M_j)$ , where  $G_j \cong S \rtimes G_{j-1}$ ,  $G_j = \pi_1(M_j)$
- Each  $G_j$  will, in fact, be isomorphic to  $(S \times S \times \ldots \times S) \rtimes \mathbb{Z}$
- We will produce different G<sub>j</sub>'s by varying the outer actions, a technical part of semi-direct products, while keeping the quotient group, ℤ, and kernel group, S, essentially constant

イロト 不得 トイヨト イヨト 二日

Let M be a manifold of dimension  $n \ge 6$  with fundamental group  $\mathbb{Z}$ . Let P be a finitely presented, superperfect, centerless, Hopfian group with torsion elements of infinitely many different orders, and let S = P \* P. Then there are uncountably many (n + 1)-dimensional, pseudo-collarable, 1-ended manifolds V with boundary M

- V will break up into semi-s-cobordisms  $(W_j, M_{j-1}, M_j)$ , where  $G_j \cong S \rtimes G_{j-1}$ ,  $G_j = \pi_1(M_j)$
- Each  $G_j$  will, in fact, be isomorphic to  $(S \times S \times \ldots \times S) \rtimes \mathbb{Z}$
- We will produce different  $G_j$ 's by varying the outer actions, a technical part of semi-direct products, while keeping the quotient group,  $\mathbb{Z}$ , and kernel group, S, essentially constant
- We will produce one V for each increasing sequence of prime numbers

### Existence of Non-Pseudo-Collarable "Nice" Manifolds

• We also show that not all ends of even "nice" manifolds are pseudo-collarable

(\* ) \* ) \* ) \* )

### Existence of Non-Pseudo-Collarable "Nice" Manifolds

• We also show that not all ends of even "nice" manifolds are pseudo-collarable

#### Theorem (R., 2010)

Let  $M^n$  be an orientable, closed manifold  $(n \ge 6)$  such that  $\pi_1(M)$  contains an element  $t_0$  of infinite order and  $\pi_1(M)$  is hypo-Abelian. Then there exists a 1-ended, orientable manifold  $V^{n+1}$  with  $\partial V = M$  in which all clean neighborhoods of infinity have finite homotopy type, but which does not have perfectly semistable fundamental group at infinity. Thus,  $V^{n+1}$  is absolutely inward tame but not pseudocollable.

# Existence of Non-Pseudo-Collarable "Nice" Manifolds

• We also show that not all ends of even "nice" manifolds are pseudo-collarable

#### Theorem (R., 2010)

Let  $M^n$  be an orientable, closed manifold  $(n \ge 6)$  such that  $\pi_1(M)$  contains an element  $t_0$  of infinite order and  $\pi_1(M)$  is hypo-Abelian. Then there exists a 1-ended, orientable manifold  $V^{n+1}$  with  $\partial V = M$  in which all clean neighborhoods of infinity have finite homotopy type, but which does not have perfectly semistable fundamental group at infinity. Thus,  $V^{n+1}$  is absolutely inward tame but not pseudocollable.

 A group G is hypo-Abelian if its perfect core, the largest perfect subgroup (necessarily normal) ⟨e⟩.

伺 ト く ヨ ト く ヨ ト

 For Q ≈ 1, this result was already known, as a corollary to Kervaire's Theorem that every homology sphere bounds a contractible manifold.

- For Q ≈ 1, this result was already known, as a corollary to Kervaire's Theorem that every homology sphere bounds a contractible manifold.
- However, we supply a new proof of this fact.

• Sketch of Proof

A B > A B >

- Sketch of Proof
- Begin by crossing N with  $\mathbb{I}$ .

- ₹ 🖬 🕨
- Sketch of Proof
- Begin by crossing N with  $\mathbb{I}$ .
- Let  $Q \cong < \alpha_1, \dots, \alpha_{k_1} | r_1, \dots, r_{l_1} >$ be a presentation for Q.

- Sketch of Proof
- Begin by crossing N with  $\mathbb{I}$ .
- Let  $Q \cong < \alpha_1, \ldots, \alpha_{k_1} | r_1, \ldots, r_{l_1} >$ be a presentation for Q.
- Let  $P \cong < \beta_1, \ldots, \beta_{k_2} | s_1, \ldots, s_{l_2} >$ be a presentation for P.

- Sketch of Proof
- Begin by crossing N with  $\mathbb{I}$ .
- Let  $Q \cong < \alpha_1, \ldots, \alpha_{k_1} | r_1, \ldots, r_{l_1} >$ be a presentation for Q.
- Let  $P \cong < \beta_1, \ldots, \beta_{k_2} | s_1, \ldots, s_{l_2} >$  be a presentation for P.
- Take a small disk D inside of  $N \times \{1\}$ .

- Sketch of Proof
- Begin by crossing N with  $\mathbb{I}$ .
- Let  $Q \cong < \alpha_1, \ldots, \alpha_{k_1} | r_1, \ldots, r_{l_1} >$ be a presentation for Q.
- Let  $P \cong < \beta_1, \ldots, \beta_{k_2} | s_1, \ldots, s_{l_2} >$  be a presentation for P.
- Take a small disk D inside of  $N \times \{1\}$ .
- Attach trivial 1-handles inside the disk for each generator  $\beta$  of P.

- Sketch of Proof
- Begin by crossing N with  $\mathbb{I}$ .
- Let  $Q \cong < \alpha_1, \ldots, \alpha_{k_1} | r_1, \ldots, r_{l_1} > be a presentation for <math>Q$ .
- Let  $P \cong < \beta_1, \ldots, \beta_{k_2} | s_1, \ldots, s_{l_2} >$ be a presentation for P.
- Take a small disk D inside of  $N \times \{1\}$ .
- Attach trivial 1-handles inside the disk for each generator  $\beta$  of P.
- Attach 2-handles across the disk for each relator s of P.

• As a corollary to the Solution to the Group Extension Problem, since we are using the trivial 2nd homology element, for each element  $\beta_i \alpha_j$  in *G*, there is a word  $w_{i,j}$  in the  $\beta$ 's so that  $\beta_i \alpha_j = \alpha_j w_{i,j}$ .

- As a corollary to the Solution to the Group Extension Problem, since we are using the trivial 2nd homology element, for each element  $\beta_i \alpha_j$  in *G*, there is a word  $w_{i,j}$  in the  $\beta$ 's so that  $\beta_i \alpha_j = \alpha_j w_{i,j}$ .
- Attach a 2-handle across each β<sub>i</sub>α<sub>j</sub>(α<sub>j</sub>w<sub>i,j</sub>)<sup>-1</sup> (these will leak outside the disk).

- As a corollary to the Solution to the Group Extension Problem, since we are using the trivial 2nd homology element, for each element β<sub>i</sub>α<sub>j</sub> in G, there is a word w<sub>i,j</sub> in the β's so that β<sub>i</sub>α<sub>j</sub> = α<sub>j</sub>w<sub>i,j</sub>.
- Attach a 2-handle across each  $\beta_i \alpha_j (\alpha_j w_{i,j})^{-1}$  (these will leak outside the disk).
- Now, we have a cobordism  $(W_1, N, M)$  with  $\pi_1(N) \cong Q$ ,  $\pi_1(W_1) \cong G$ , and  $\pi_1(M) \cong G$ .

#### Lemma

Let  $\overline{W_1}$  be the cover of  $W_1$  with fund gp P (and covering transformation group Q). Then we may arrange the handles attached to  $\overline{W_1}$  across  $\overline{M}$  so that they project down equivariantly via the covering map to corresponding handles attached to W across M.

• So, now the relative handlebody chain complex of  $(\overline{W_1}, \widetilde{N})$  looks like

$$\rightarrow C_3(\overline{W_1},\widetilde{N};\mathbb{Z}) \longrightarrow C_2(\overline{W_1},\widetilde{N};\mathbb{Z}) \stackrel{\partial}{\longrightarrow} C_1(\overline{W_1},\widetilde{N};\mathbb{Z}) \longrightarrow C_0(\overline{W_1},\widetilde{N};\mathbb{Z}) -$$



• Call 
$$A = \bigoplus_{i=1}^{l_2} \mathbb{Z}Q$$
 and call  $B = \bigoplus_{j=1}^{k_2} \mathbb{Z}Q$ .

< ∃ >

-

• Call  $A = \bigoplus_{i=1}^{k_2} \mathbb{Z}Q$  and call  $B = \bigoplus_{i=1}^{k_2} \mathbb{Z}Q$ .

• Since 
$$H_1(\overline{W_1}) = 0$$
,  $\partial|_A$  is onto.

- ∢ ⊒ →

╗▶ < 글▶

- Call  $A = \bigoplus_{i=1}^{k_2} \mathbb{Z}Q$  and call  $B = \bigoplus_{j=1}^{k_2} \mathbb{Z}Q$ .
- Since  $H_1(\overline{W_1}) = 0$ ,  $\partial|_A$  is onto.
- Clearly, B is a free  $\mathbb{Z}Q$ -module.

#### Lemma

Let A, B, and C be R-modules, with B a free R-module (on the basis F), and let  $\Theta : A \bigoplus B \to C$  be an R-module homomorphism. Suppose  $\Theta|_A$  is onto. Then ker $(\Theta) \cong ker(\Theta|_A) \bigoplus B$ .

伺 ト イヨト イヨト

#### • So, ker( $\partial$ ) is a free, finitely generated $\mathbb{Z}Q$ -module

-∢ ≣ ▶

So, ker(∂) is a free, finitely generated ZQ-module
Also, π<sub>1</sub>(W<sub>1</sub>) is superperfect.

### Lemma (Superperfect Groups Have Spherical Elements for $H_2$ )

Let P be a superperfect group. Let M be a manifold which has fundamental group isomorphic to P. Then any element of  $H_2(M)$ can be killed by attaching 3-handles.

• This lemma may be seen as a direct corollary of the definition of superperfect.

• So, we can make 
$$H_*(\overline{W_1}, \widetilde{N}) = 0$$
.

→ 3 → 4 3

- So, we can make  $H_*(\overline{W_1}, \widetilde{N}) = 0$ .
- Unfortunately,  $\pi_1(W_1) \cong G$ , not Q.

• So, we add canceling 2-, 3-, and 4-handles for all the 1-, 2-, and 3-handles we added to W.

- So, we add canceling 2-, 3-, and 4-handles for all the 1-, 2-, and 3-handles we added to W.
- This creates a cobordism (W<sub>2</sub>, M, N) with W<sub>1</sub> ∪<sub>M</sub> W<sub>2</sub> homeomorphic to N × I.

- So, we add canceling 2-, 3-, and 4-handles for all the 1-, 2-, and 3-handles we added to W.
- This creates a cobordism (W<sub>2</sub>, M, N) with W<sub>1</sub> ∪<sub>M</sub> W<sub>2</sub> homeomorphic to N × I.
- Finally, read  $W_2$  from right to left.

- So, we add canceling 2-, 3-, and 4-handles for all the 1-, 2-, and 3-handles we added to W.
- This creates a cobordism (W<sub>2</sub>, M, N) with W<sub>1</sub> ∪<sub>M</sub> W<sub>2</sub> homeomorphic to N × I.
- Finally, read  $W_2$  from right to left.
- This creates a cobordism  $(W_3, N, M)$  with [(n+1)-4]-, [(n+1)-3]-, and [(n+1)-2]-handles added.

- So, we add canceling 2-, 3-, and 4-handles for all the 1-, 2-, and 3-handles we added to W.
- This creates a cobordism (W<sub>2</sub>, M, N) with W<sub>1</sub> ∪<sub>M</sub> W<sub>2</sub> homeomorphic to N × I.
- Finally, read  $W_2$  from right to left.
- This creates a cobordism  $(W_3, N, M)$  with [(n+1)-4]-, [(n+1)-3]-, and [(n+1)-2]-handles added.
- This means  $\pi_1(W_3) \cong Q$ , as  $n \ge 6$ .

• Now, 
$$\pi_1(\widetilde{W}_3) \cong 1$$
.

→ 3 → 4 3

- Now,  $\pi_1(\widetilde{W}_3) \cong 1$ .
- Also, H\*(W<sub>3</sub>, N) = 0, by a straight-forward argument using the fact that H<sub>\*</sub>(W<sub>3</sub>, N) = 0.

- Now,  $\pi_1(\widetilde{W}_3) \cong 1$ .
- Also, H\*(W<sub>3</sub>, N) = 0, by a straight-forward argument using the fact that H<sub>\*</sub>(W<sub>3</sub>, N) = 0.
- So, by the relative Hurewicz theorem,  $\pi_n(\widetilde{W}_3, \widetilde{N}) = \pi_n(W_3, N) = 0$  for  $n \ge 2$ .

- Now,  $\pi_1(\widetilde{W}_3) \cong 1$ .
- Also, H\*(W<sub>3</sub>, N) = 0, by a straight-forward argument using the fact that H<sub>\*</sub>(W<sub>3</sub>, N) = 0.
- So, by the relative Hurewicz theorem,  $\pi_n(\widetilde{W}_3, \widetilde{N}) = \pi_n(W_3, N) = 0$  for  $n \ge 2$ .
- This proves  $W_3$  strong deformation retracts onto N

- Now,  $\pi_1(\widetilde{W}_3) \cong 1$ .
- Also, H\*(W<sub>3</sub>, N) = 0, by a straight-forward argument using the fact that H<sub>\*</sub>(W<sub>3</sub>, N) = 0.
- So, by the relative Hurewicz theorem,  $\pi_n(\widetilde{W}_3, \widetilde{N}) = \pi_n(W_3, N) = 0$  for  $n \ge 2$ .
- This proves  $W_3$  strong deformation retracts onto N
- Because of the special nature of the group extension G, by an otherwise well-known technique (Rourke & Sanderson, P. 90), and by a few theorems of Cohen, we may adjust the torsion on M so that N → W<sub>3</sub> is a simple homotopy equivalence.

通 と く ヨ と く ヨ と

- Now,  $\pi_1(\widetilde{W}_3) \cong 1$ .
- Also, H\*(W<sub>3</sub>, N) = 0, by a straight-forward argument using the fact that H<sub>\*</sub>(W<sub>3</sub>, N) = 0.
- So, by the relative Hurewicz theorem,  $\pi_n(\widetilde{W}_3, \widetilde{N}) = \pi_n(W_3, N) = 0$  for  $n \ge 2$ .
- This proves  $W_3$  strong deformation retracts onto N
- Because of the special nature of the group extension G, by an otherwise well-known technique (Rourke & Sanderson, P. 90), and by a few theorems of Cohen, we may adjust the torsion on M so that N → W<sub>3</sub> is a simple homotopy equivalence.
- This concludes the proof

• We now return to the theorem about uncoutably many pseudo-collars with similar pro-fundamental group structure at infinity

- We now return to the theorem about uncoutably many pseudo-collars with similar pro-fundamental group structure at infinity
- There actually is a finitely presented, superperfect, centerless, Hopfian group with torsion elements of infinitely many different orders

- We now return to the theorem about uncoutably many pseudo-collars with similar pro-fundamental group structure at infinity
- There actually is a finitely presented, superperfect, centerless, Hopfian group with torsion elements of infinitely many different orders
- Thompson's group V fits the bill

- We now return to the theorem about uncoutably many pseudo-collars with similar pro-fundamental group structure at infinity
- There actually is a finitely presented, superperfect, centerless, Hopfian group with torsion elements of infinitely many different orders
- Thompson's group V fits the bill
- It is fintely presented, superperfect, simple (hence centerless and Hopfian - also perfect), and contains a copy of each S<sub>n</sub>, hence of each finite group, hence torsion elements of each order

• Of course, it's pretty easy to whip out a 1-ended, pseudo-collarable manifold V: you just keep taking larger and larger G<sub>i</sub>'s and M<sub>i</sub>'s and glue the cobordisms together

- Of course, it's pretty easy to whip out a 1-ended, pseudo-collarable manifold V: you just keep taking larger and larger G<sub>j</sub>'s and M<sub>j</sub>'s and glue the cobordisms together
- The hard part is proving that the resulting pro-fundamental group systems at infinity are all non-isomorphic
- Of course, it's pretty easy to whip out a 1-ended, pseudo-collarable manifold V: you just keep taking larger and larger G<sub>i</sub>'s and M<sub>i</sub>'s and glue the cobordisms together
- The hard part is proving that the resulting pro-fundamental group systems at infinity are all non-isomorphic
- For example, if  $Q = \prod_{i=1}^{\infty} \mathbb{Z}$ ,  $K_1 = \mathbb{Z}$ , and  $K_2 = \mathbb{Z} \times \mathbb{Z}$ , then  $G_1 = K_1 \times Q$  and  $G_2 = K_2 \times Q$  are isomorphic, even though  $K_1 \ncong K_2$

伺下 イラト イラト ニラ

• We would like to relax the constraint on P that it have torsion elements of infinitely many different orders to that it contains a countably infinite subset U with the property that there is no isomorphism  $\psi$  of P which carries  $u_i$  onto  $u_j$  for  $u_i$  and  $u_j$ distinct elements of U, but have run into some technical difficulties

- We would like to relax the constraint on P that it have torsion elements of infinitely many different orders to that it contains a countably infinite subset U with the property that there is no isomorphism  $\psi$  of P which carries  $u_i$  onto  $u_j$  for  $u_i$  and  $u_j$ distinct elements of U, but have run into some technical difficulties
- This would open up more groups as possible candidates for P, for example, all fundamental groups of hyperbolic homology spheres of dimension ≥ 3

• Sketch of Proof

→ □ → → □ →

#### • Sketch of Proof

#### Lemma

Let A, B, C, and D be nontrivial groups and ley  $\phi : A \times B \to C * D$  be a epimorphism. Then either  $\phi(A \times \{1\})$  is all of C \* D and  $\phi(\{1\} \times B)$  is trivial or  $\phi(A \times \{1\})$  is trivial and  $\phi(\{1\} \times B)$  is all of C \* D

向 ト イヨ ト イヨト

#### • Sketch of Proof

#### Lemma

Let A, B, C, and D be nontrivial groups and ley  $\phi : A \times B \to C * D$  be a epimorphism. Then either  $\phi(A \times \{1\})$  is all of C \* D and  $\phi(\{1\} \times B)$  is trivial or  $\phi(A \times \{1\})$  is trivial and  $\phi(\{1\} \times B)$  is all of C \* D

• Remark This is really the grain of sand that led to the pearl that is the theorem. Everything must commute and the domain, and nothing can commute in the range

#### • Sketch of Proof

#### Lemma

Let A, B, C, and D be nontrivial groups and ley  $\phi : A \times B \to C * D$  be a epimorphism. Then either  $\phi(A \times \{1\})$  is all of C \* D and  $\phi(\{1\} \times B)$  is trivial or  $\phi(A \times \{1\})$  is trivial and  $\phi(\{1\} \times B)$  is all of C \* D

- Remark This is really the grain of sand that led to the pearl that is the theorem. Everything must commute and the domain, and nothing can commute in the range
- The proof uses the fact that a free product is never an internal direct product

伺 ト く ヨ ト く ヨ ト

#### Lemma (The Straightening-Up Lemma (n = m))

Let n = m, let S be a free product, and let  $\psi: S \times S \times \ldots \times S$  (n copies)  $\rightarrow S \times S \times \ldots \times S$  (m copies) be an isomorphism. Write  $\psi_{i,j}$  for  $\pi_{S_j} \circ \psi|_{S_i}$ . Then  $\psi$  splits as nisomorphisms  $\psi_{i,\sigma(i)}$ , with  $\sigma$  a permutation, with all other  $\psi_{i,j}$ 's being the trivial map

#### Lemma (The Straightening-Up Lemma (n = m))

Let n = m, let S be a free product, and let  $\psi: S \times S \times \ldots \times S$  (n copies)  $\rightarrow S \times S \times \ldots \times S$  (m copies) be an isomorphism. Write  $\psi_{i,j}$  for  $\pi_{S_j} \circ \psi|_{S_i}$ . Then  $\psi$  splits as nisomorphisms  $\psi_{i,\sigma(i)}$ , with  $\sigma$  a permutation, with all other  $\psi_{i,j}$ 's being the trivial map

#### Lemma (The Straightening-Up Corollary (n > m))

Let n > m, let S be a Hopfian free product, and let  $\psi : S \times S \times \ldots \times S$  (n copies)  $\rightarrow S \times S \times \ldots \times S$  (m copies) be an epimorphism. Write  $\psi_{i,j}$  for  $\pi_{S_j} \circ \psi|_{S_i}$ . Then  $\psi$  splits as misomorphisms  $\psi_{\sigma^{-1}(i),i}$ , with  $\sigma$  a permutation, with all other  $\psi_{i,j}$ 's being the trivial map

・ロト ・同ト ・ヨト ・ヨト

• For the next 2 Lemmas, we have

< ∃ >

- For the next 2 Lemmas, we have
- S a free product of 2 copies of the same group superperfect  $P_1 * P_2$  (centerless and Hopfian for the Corollary) with an infinite list of torsion elements of different orders (all chosen from  $P_1$ )

- For the next 2 Lemmas, we have
- S a free product of 2 copies of the same group superperfect  $P_1 * P_2$  (centerless and Hopfian for the Corollary) with an infinite list of torsion elements of different orders (all chosen from  $P_1$ )

• 
$$G_1 = (S \times S \times \ldots \times S) \rtimes_{\phi_{u_1}, \phi_{u_2}, \ldots, \phi_{u_n}} \mathbb{Z}$$
 and

- For the next 2 Lemmas, we have
- S a free product of 2 copies of the same group superperfect  $P_1 * P_2$  (centerless and Hopfian for the Corollary) with an infinite list of torsion elements of different orders (all chosen from  $P_1$ )
- $G_1 = (S \times S \times \ldots \times S) \rtimes_{\phi_{u_1}, \phi_{u_2}, \ldots, \phi_{u_n}} \mathbb{Z}$  and
- G<sub>2</sub> = (S × S × ... × S) ⋊<sub>φv1</sub>,φv2</sub>,...,φvm ℤ are semi-direct products

伺 と く ヨ と く ヨ と

- For the next 2 Lemmas, we have
- S a free product of 2 copies of the same group superperfect  $P_1 * P_2$  (centerless and Hopfian for the Corollary) with an infinite list of torsion elements of different orders (all chosen from  $P_1$ )
- $G_1 = (S \times S \times \ldots \times S) \rtimes_{\phi_{u_1}, \phi_{u_2}, \ldots, \phi_{u_n}} \mathbb{Z}$  and
- G<sub>2</sub> = (S × S × ... × S) ⋊<sub>φv1</sub>, φv2</sub>,...,φvm ℤ are semi-direct products

• where  $\phi_{u_i}$  is the outer action of  $\mathbb{Z}$  on S given by  $\phi_{u_i}(z)(p) = \begin{cases} p & \text{if } p \in P_1 \\ u_i^{-z} p u_i^z & \text{if } p \in P_2 \end{cases}$ 

- For the next 2 Lemmas, we have
- S a free product of 2 copies of the same group superperfect  $P_1 * P_2$  (centerless and Hopfian for the Corollary) with an infinite list of torsion elements of different orders (all chosen from  $P_1$ )

• 
$$G_1 = (S \times S \times \ldots \times S) \rtimes_{\phi_{u_1}, \phi_{u_2}, \ldots, \phi_{u_n}} \mathbb{Z}$$
 and

•  $G_2 = (S \times S \times ... \times S) \rtimes_{\phi_{v_1}, \phi_{v_2},...,\phi_{v_m}} \mathbb{Z}$  are semi-direct products

• where  $\phi_{u_i}$  is the outer action of  $\mathbb{Z}$  on S given by  $\phi_{u_i}(z)(p) = \begin{cases} p & \text{if } p \in P_1 \\ u_i^{-z} p u_i^z & \text{if } p \in P_2 \end{cases}$ 

• (This particular kind of outer action is called a partial conjugation)

#### Lemma (The Conder Isomorphism Lemma (n = m))

Let n = m, and let  $\theta : G_1 \to G_2$  be an isomorphism. Then  $\theta$ restricts to an isomorphism on the commutator subgroup  $K = S \times S \times \ldots \times S$ , and S factors which correspond by the Straightening-Up Lemma (n = m) have  $\phi_u$ 's with the same order in the definition of their semi-direct product

#### Lemma (The Conder Isomorphism Lemma (n = m))

Let n = m, and let  $\theta : G_1 \to G_2$  be an isomorphism. Then  $\theta$ restricts to an isomorphism on the commutator subgroup  $K = S \times S \times \ldots \times S$ , and S factors which correspond by the Straightening-Up Lemma (n = m) have  $\phi_u$ 's with the same order in the definition of their semi-direct product

#### Lemma (The Conder Isomorphism Corollary (n > m))

Let n > m, and let  $\theta : G_1 \to G_2$  be an epimorphism. Then  $\theta$ restricts to an epimorphism on the commutator subgroup  $K = S \times S \times \ldots \times S$ , and S factors which correspond by the Straightening-Up Corollary (n > m) have  $\phi_u$ 's with the same order in the definition of their semi-direct product

<ロ> <同> <同> < 同> < 同>

Now, for  $\Omega$  the collection of all increasing sequences of prime numbers, we have the following tree

Now, for  $\Omega$  the collection of all increasing sequences of prime numbers, we have the following tree



We start at the root of the tree with  $\mathbb{Z}$ , and keep blowing this quotient group up by a semi-direct product with S at each node

We start at the root of the tree with  $\mathbb{Z}$ , and keep blowing this quotient group up by a semi-direct product with S at each node



This gives rise to binary tree of group extensions ...

This gives rise to binary tree of group extensions ...

... and 1-sided s-cobordisms

→ 3 → < 3</p>

... and 1-sided s-cobordisms

A B + A B +

Now, for each ω ∈ Ω, let (ω, n) be the corresponding finite sequence of length n

A B > A B >

- Now, for each ω ∈ Ω, let (ω, n) be the corresponding finite sequence of length n
- Corresponding to each ω ∈ Ω, we have an inverse sequence of groups (G<sub>(ω,n)</sub>, α<sub>(ω,n)</sub>)

- Now, for each ω ∈ Ω, let (ω, n) be the corresponding finite sequence of length n
- Corresponding to each ω ∈ Ω, we have an inverse sequence of groups (G<sub>(ω,n)</sub>, α<sub>(ω,n)</sub>)
- Two inverse sequences are pro-isomorphic if and only if, after passing to subsequences, they may be put into a ladder diagram



 $\bullet\,$  To finish off the proof, let  $\omega$  and  $\eta$  be distinct sequences in  $\Omega$ 

→ 3 → < 3</p>

- $\bullet\,$  To finish off the proof, let  $\omega$  and  $\eta$  be distinct sequences in  $\Omega$
- Suppose  $\omega$  and  $\eta$  agree up to some level  $n_0$

A B > A B >

- $\bullet$  To finish off the proof, let  $\omega$  and  $\eta$  be distinct sequences in  $\Omega$
- Suppose  $\omega$  and  $\eta$  agree up to some level  $n_0$
- Consider the 1-ended, pseudo-collarable ( n+1 )-manifolds  $V_\omega$  and  $V_\eta$

- To finish off the proof, let  $\omega$  and  $\eta$  be distinct sequences in  $\Omega$
- Suppose  $\omega$  and  $\eta$  agree up to some level  $n_0$
- Consider the 1-ended, pseudo-collarable ( n+1 )-manifolds  $V_\omega$  and  $V_\eta$
- Suppose, after passing to subsequences, we have their pro-fundamental group systems at infinity fitting into a ladder diagram



#### Lemma

By passing to a further subsequence if necessary, we may assume  $n_0 < m_1 < n_2 < m_3 < \dots$ 

伺 ト く ヨ ト く ヨ ト

#### Lemma

By passing to a further subsequence if necessary, we may assume  $n_0 < m_1 < n_2 < m_3 < \dots$ 

• Now,  $g_{n_2}$  fits the form for the Conder Isomorphism Corollary (n > m), so it must be onto  $m_1$  copies of S and corresponding copies of S must have  $\phi_{u_i}$ 's withe same order

伺 ト く ヨ ト く ヨ ト

#### Lemma

By passing to a further subsequence if necessary, we may assume  $n_0 < m_1 < n_2 < m_3 < \dots$ 

- Now,  $g_{n_2}$  fits the form for the Conder Isomorphism Corollary (n > m), so it must be onto  $m_1$  copies of S and corresponding copies of S must have  $\phi_{u_i}$ 's withe same order
- But,  $\omega$  and  $\eta$  only agree up to  $n_0$  and cannot have  $\phi_{u_i}$ 's with the same orders on the remaining  $m_1 n_0$  corresponding copies of S!

伺 と く ヨ と く ヨ と …

#### Lemma

By passing to a further subsequence if necessary, we may assume  $n_0 < m_1 < n_2 < m_3 < \dots$ 

- Now,  $g_{n_2}$  fits the form for the Conder Isomorphism Corollary (n > m), so it must be onto  $m_1$  copies of S and corresponding copies of S must have  $\phi_{u_i}$ 's withe same order
- But,  $\omega$  and  $\eta$  only agree up to  $n_0$  and cannot have  $\phi_{u_i}$ 's with the same orders on the remaining  $m_1 n_0$  corresponding copies of S!
- This concludes the proof

伺 ト イ ヨ ト イ ヨ ト
Sketch of Proof

A B M A B M

- Sketch of Proof
- For the inward tame manifold that is not pseudo-collarable, we start with a manifold that has a hypo-Abelian fundamental group  $G_0$  with an element of infinite order t.

- Sketch of Proof
- For the inward tame manifold that is not pseudo-collarable, we start with a manifold that has a hypo-Abelian fundamental group  $G_0$  with an element of infinite order t.

• Write 
$$G_0 = \langle A_0 \mid R_0 \rangle$$

- Sketch of Proof
- For the inward tame manifold that is not pseudo-collarable, we start with a manifold that has a hypo-Abelian fundamental group  $G_0$  with an element of infinite order t.

• Write 
$$G_0 = \langle A_0 \mid R_0 \rangle$$

• Create a new group  $G_1 = \langle A_0, t_1 | R_0, t_1 = t_0 t_1^2 t_0 \rangle$ , where  $t_0$  is the element of infinite order in  $G_0$ 

- Sketch of Proof
- For the inward tame manifold that is not pseudo-collarable, we start with a manifold that has a hypo-Abelian fundamental group G<sub>0</sub> with an element of infinite order t.

• Write 
$$G_0 = \langle A_0 \mid R_0 \rangle$$

- Create a new group  $G_1 = \langle A_0, t_1 | R_0, t_1 = t_0 t_1^2 t_0 \rangle$ , where  $t_0$  is the element of infinite order in  $G_0$
- Setting  $A_1 = A_0 \cup \{t_1\}$  and  $R_1 = R_0 \cup \{t_1 = t_0 t_1^2 t_0\}$ , we continue inductively setting  $G_j = \langle A_{j-1}, t_j | R_{j-1}, t_j = t_{j-1} t_j^2 t_{j-1} \rangle$

• By a theorem of Howie, as we can write  $G_j = G_{j-1} *_{\langle t_j \rangle} I_2$ , where  $I_2$  is the Baumslag-Solitar group  $\langle t, x | t = xt^2x \rangle$ ,  $G_j$  is hypo-Abelian.

- By a theorem of Howie, as we can write  $G_j = G_{j-1} *_{\langle t_j \rangle} I_2$ , where  $I_2$  is the Baumslag-Solitar group  $\langle t, x | t = xt^2x \rangle$ ,  $G_j$  is hypo-Abelian.
- Now, we produce the manifold V by starting with the manifold  $M_0$  that has  $G_0$  as its fundamental group, forming a cobordism  $(W, M_0, M_1)$ , where  $M_1$  has  $G_1$  as its fundamental group, and proceeding inductively.

- By a theorem of Howie, as we can write  $G_j = G_{j-1} *_{\langle t_j \rangle} I_2$ , where  $I_2$  is the Baumslag-Solitar group  $\langle t, x | t = xt^2x \rangle$ ,  $G_j$  is hypo-Abelian.
- Now, we produce the manifold V by starting with the manifold  $M_0$  that has  $G_0$  as its fundamental group, forming a cobordism  $(W, M_0, M_1)$ , where  $M_1$  has  $G_1$  as its fundamental group, and proceeding inductively.
- First, cross  $M_0$  with  $\mathbb{I}$ , add a trivially attached 1-handle  $\alpha_1^1$  representing  $t_1$  and a 2-handle  $\alpha_2^2$  representing  $t_1 = t_0 t_1^2 t_0$ , where  $t_0$  is a loop of infinite order in  $M_0$ .

伺 と く ヨ と く ヨ と …

• Then this cobordism  $(B_0, M_0, M_1)$  has fundamental group  $G_1$  and it therefore not the cobordism we seek.

- Then this cobordism  $(B_0, M_0, M_1)$  has fundamental group  $G_1$  and it therefore not the cobordism we seek.
- Attach a canceling handle for  $\alpha_1^1$ ,  $\beta_1^2$ , note that now  $\alpha_2^2$  is now trivially attached, and attach a canceling 3-handle  $\beta_2^3$ .

- Then this cobordism  $(B_0, M_0, M_1)$  has fundamental group  $G_1$  and it therefore not the cobordism we seek.
- Attach a canceling handle for  $\alpha_1^1$ ,  $\beta_1^2$ , note that now  $\alpha_2^2$  is now trivially attached, and attach a canceling 3-handle  $\beta_2^3$ .
- Now,  $B_0 \cup \beta_1^2 \cup \beta_2^3 = B_0 \cup_{M_1} W_0$ , where  $(W_0, M_1, M_0)$  is  $M_1 \times \mathbb{I}$  with  $\beta_1^2$  and  $\beta_2^3$  attached

- Then this cobordism  $(B_0, M_0, M_1)$  has fundamental group  $G_1$  and it therefore not the cobordism we seek.
- Attach a canceling handle for  $\alpha_1^1$ ,  $\beta_1^2$ , note that now  $\alpha_2^2$  is now trivially attached, and attach a canceling 3-handle  $\beta_2^3$ .
- Now,  $B_0 \cup \beta_1^2 \cup \beta_2^3 = B_0 \cup_{M_1} W_0$ , where  $(W_0, M_1, M_0)$  is  $M_1 \times \mathbb{I}$  with  $\beta_1^2$  and  $\beta_2^3$  attached
- Read  $W_0$  upside-down, so that it becomes  $(W_0, M_0, M_1)$ , and  $W_0$  looks like  $M_0 \times \mathbb{I}$  with an (n-3)-handle  $\gamma_2^{n-3}$  and an (n-2)-handle  $\gamma_2^{n-2}$  attached

伺 と く ヨ と く ヨ と … ヨ

- Then this cobordism ( $B_0, M_0, M_1$ ) has fundamental group  $G_1$  and it therefore not the cobordism we seek.
- Attach a canceling handle for  $\alpha_1^1$ ,  $\beta_1^2$ , note that now  $\alpha_2^2$  is now trivially attached, and attach a canceling 3-handle  $\beta_2^3$ .
- Now,  $B_0 \cup \beta_1^2 \cup \beta_2^3 = B_0 \cup_{M_1} W_0$ , where  $(W_0, M_1, M_0)$  is  $M_1 \times \mathbb{I}$  with  $\beta_1^2$  and  $\beta_2^3$  attached
- Read  $W_0$  upside-down, so that it becomes  $(W_0, M_0, M_1)$ , and  $W_0$  looks like  $M_0 \times \mathbb{I}$  with an (n-3)-handle  $\gamma_2^{n-3}$  and an (n-2)-handle  $\gamma_2^{n-2}$  attached
- $(W_0, M_0, M_1)$  is the cobordism we seek

伺 と く ヨ と く ヨ と … ヨ

• Continue inductively forming  $(W_1, M_1, M_2)$ ,  $(W_2, M_2, M_3)$ , ad *nfinitum*, and set  $V = W_0 \cup_{M_1} W_1 \cup_{M_2} W_3 \dots$ 

- Continue inductively forming  $(W_1, M_1, M_2)$ ,  $(W_2, M_2, M_3)$ , ad *nfinitum*, and set  $V = W_0 \cup_{M_1} W_1 \cup_{M_2} W_3 \dots$
- Then V has  $G_0 \leftarrow G_1 \leftarrow G_2 \leftarrow \dots$  as its fundamental group system at infinity and  $\partial V = M_0$

- Continue inductively forming  $(W_1, M_1, M_2)$ ,  $(W_2, M_2, M_3)$ , ad *nfinitum*, and set  $V = W_0 \cup_{M_1} W_1 \cup_{M_2} W_3 \dots$
- Then V has  $G_0 \leftarrow G_1 \leftarrow G_2 \leftarrow \dots$  as its fundamental group system at infinity and  $\partial V = M_0$
- Finally, if we set  $N_i = W_i \cup_{M_i} W_{i+1} \cup_{M_{i+1}} W_{i+2} \dots$ ,  $N'_i = \beta_i^2 \cup N_i$ , and  $M'_i = \beta_i^2 \cup M_i$ , then  $M'_i \hookrightarrow N'_i$  is a homotopy equivalence, so V is absolutely inward tame.

- Continue inductively forming  $(W_1, M_1, M_2)$ ,  $(W_2, M_2, M_3)$ , ad *nfinitum*, and set  $V = W_0 \cup_{M_1} W_1 \cup_{M_2} W_3 \dots$
- Then V has  $G_0 \leftarrow G_1 \leftarrow G_2 \leftarrow \dots$  as its fundamental group system at infinity and  $\partial V = M_0$
- Finally, if we set  $N_i = W_i \cup_{M_i} W_{i+1} \cup_{M_{i+1}} W_{i+2} \dots$ ,  $N'_i = \beta_i^2 \cup N_i$ , and  $M'_i = \beta_i^2 \cup M_i$ , then  $M'_i \hookrightarrow N'_i$  is a homotopy equivalence, so V is absolutely inward tame.
- This completes the proof.



#### • THE END

Jeffrey Rolland Some Results on Pseudo-Collar Structures on High-Dimensional