Some Results on Pseudo-Collar Structures on High-Dimensional Manifolds

Jeffrey Rolland

Department of Mathematical Sciences University of Wisconsin–Milwaukee

January 21, 2015

Jeffrey Rolland Some Results on Pseudo-Collar Structures on High-Dimensional

医阿里氏阿里

 QQ

Quillen's plus construction is a way of taking a CW complex or manifold X whose fundamental group G contains a perfect normal subgroup P and creating a new CW complex or manifold X^+ whose fundamental group is simpler, namely $Q = G/P$

母 ▶ イヨ ▶ イヨ ▶ │

- Quillen's plus construction is a way of taking a CW complex or manifold X whose fundamental group G contains a perfect normal subgroup P and creating a new CW complex or manifold X^+ whose fundamental group is simpler, namely $Q = G/P$
- If the object is a manifold, the plus construction creates a plus cobordism (W, X, X^+) between the two manifold with $X^+ \hookrightarrow W$ a simple homotopy equivalence which gives rise to a map f between the two manifolds

n → x ∃ → x ∃ → → ∃

- Quillen's plus construction is a way of taking a CW complex or manifold X whose fundamental group G contains a perfect normal subgroup P and creating a new CW complex or manifold X^+ whose fundamental group is simpler, namely $Q = G/P$
- If the object is a manifold, the plus construction creates a plus cobordism (W, X, X^+) between the two manifold with $X^+ \hookrightarrow W$ a simple homotopy equivalence which gives rise to a map f between the two manifolds
- If the object is a CW complex, the Plus Construction simply create a map f between the two CW complexes

 $\mathcal{A}(\overline{\mathcal{P}}) \rightarrow \mathcal{A}(\mathbb{B}) \rightarrow \mathcal{A}(\mathbb{B}) \rightarrow \mathbb{B}$

- Quillen's plus construction is a way of taking a CW complex or manifold X whose fundamental group G contains a perfect normal subgroup P and creating a new CW complex or manifold X^+ whose fundamental group is simpler, namely $Q = G/P$
- If the object is a manifold, the plus construction creates a plus cobordism (W, X, X^+) between the two manifold with $X^+ \hookrightarrow W$ a simple homotopy equivalence which gives rise to a map f between the two manifolds
- If the object is a CW complex, the Plus Construction simply create a map f between the two CW complexes
- In either case, the map f is a $\mathbb{Z} Q$ -homology isomorphism

 $\mathcal{A}(\overline{\mathcal{B}}) \rightarrow \mathcal{A}(\mathbb{B}) \rightarrow \mathcal{A}(\mathbb{B}) \rightarrow \mathcal{A}(\mathbb{B})$

What we have discovered is a theory of a Geometric Reverse to Quillen's Plus Construction.

k ∃ k

 $2Q$

- What we have discovered is a theory of a Geometric Reverse to Quillen's Plus Construction.
- Specifically, given a closed manifold N with fundamental group $Q = \pi_1(N)$ and a f.p. superperfect group S, we construct a compact 1-sided s-cobordism W whose left-hand boundary component is N and whose right-hand boundary component is a closed manifold N_− whose fundamental group G is a semi-direct product of Q by K, $G = S \rtimes Q$

Allen Market Street

- What we have discovered is a theory of a Geometric Reverse to Quillen's Plus Construction.
- Specifically, given a closed manifold N with fundamental group $Q = \pi_1(N)$ and a f.p. superperfect group S, we construct a compact 1-sided s-cobordism W whose left-hand boundary component is N and whose right-hand boundary component is a closed manifold N_− whose fundamental group G is a semi-direct product of Q by K, $G = S \rtimes Q$
- (This means G satisfies $1 \rightarrow S \rightarrow G \rightarrow Q \rightarrow 1$, so G is a group extension of Q by S , with a special condition for how elements of Q multiply elements of S in G)

何 ▶ (三) (三)

- What we have discovered is a theory of a Geometric Reverse to Quillen's Plus Construction.
- Specifically, given a closed manifold N with fundamental group $Q = \pi_1(N)$ and a f.p. superperfect group S, we construct a compact 1-sided s-cobordism W whose left-hand boundary component is N and whose right-hand boundary component is a closed manifold N_− whose fundamental group G is a semi-direct product of Q by K, $G = S \rtimes Q$
- \bullet (This means G satisfies $1 \to S \to G \to Q \to 1$, so G is a group extension of Q by S , with a special condition for how elements of Q multiply elements of S in G)
- (Semi-direct products are the simplest kind of group extensions; They are the split-exact extensions. Direct products are one example)

 $\sqrt{4}$) $\sqrt{2}$) $\sqrt{2}$

- What we have discovered is a theory of a Geometric Reverse to Quillen's Plus Construction.
- Specifically, given a closed manifold N with fundamental group $Q = \pi_1(N)$ and a f.p. superperfect group S, we construct a compact 1-sided s-cobordism W whose left-hand boundary component is N and whose right-hand boundary component is a closed manifold N_− whose fundamental group G is a semi-direct product of Q by K, $G = S \rtimes Q$
- (This means G satisfies $1 \rightarrow S \rightarrow G \rightarrow Q \rightarrow 1$, so G is a group extension of Q by S , with a special condition for how elements of Q multiply elements of S in G)
- (Semi-direct products are the simplest kind of group extensions; They are the split-exact extensions. Direct products are one example)
- The cobordism (W, N, N_+) is has $\pi_1(N) \cong Q$, $\pi_1(N_-) \cong G$, and $N \hookrightarrow W$ a simple homotopy equiv[alen](#page-8-0)[ce](#page-10-0)

 QQ

• We call (W, N, N_-) a 1-sided s-cobordism, or sometimes a semi-s-cobordism, because it is "half an s-cobordism"

御 ▶ イ君 ▶ イ君 ▶

۵

• We call (W, N, N_-) a 1-sided s-cobordism, or sometimes a semi-s-cobordism, because it is "half an s-cobordism"

 QQ

• We call (W, N, N_-) a 1-sided s-cobordism, or sometimes a semi-s-cobordism, because it is "half an s-cobordism"

\bullet

 \bullet Note (W, N₋, N) (read upside-down, with the roles of N and $N_$ reversed) is also a 1-sided s-cobordims, called a plus $\mathsf{cobordism}\;(\mathsf{so}\;(\mathsf{N}_-)^+\approx \mathsf{N})$

つくい

For the rest of this talk, all mflds are assumed to be orientable.

Theorem (R., 2009)

Let $n \geq 6$. Let N be a closed n-manifold with $Q = \pi_1(N)$. Let S be f.p. and superperfect. Then there exists a cpt n-dimensional 1-sided h-cobordism (W, N, M) with left-hand bdy N and with right-hand bdy M having $\pi_1(M) \cong G$, where G is a gp extension of Q by S with trivial second homology elt and with $N \hookrightarrow W$ a simple homotopy equivalence.

What we did next was to "stack" these 1-sided s-cobordisms, forming $(W_1, N, N_-, W_-, N_-, N_-,)$, and so on, out to infinity

伊 ▶ マミ ▶ マミ ▶

 QQ

э

- What we did next was to "stack" these 1-sided s-cobordisms, forming $(W_1, N, N_-, W_-, N_-, N_-)$, and so on, out to infinity
- Gluing W_1 and W_2 together across $N_$ and so on produces an $(n + 1)$ -dimesional, 1-ended manifold V whose has neighborhoods of infinity that are pseudo-collars

 \bullet

- What we did next was to "stack" these 1-sided s-cobordisms, forming $(W_1, N, N_-, W_-, N_-, N_-)$, and so on, out to infinity
- Gluing W_1 and W_2 together across $N_$ and so on produces an $(n + 1)$ -dimesional, 1-ended manifold V whose has neighborhoods of infinity that are pseudo-collars

Jeffrey Rolland Some Results on Pseudo-Collar Structures on High-Dimensional I

Pseudo-collars are generalizations of collar structures on the boundary of a manifold

 $\mathcal{A} \xrightarrow{\sim} \mathcal{B} \rightarrow \mathcal{A} \xrightarrow{\sim} \mathcal{B} \rightarrow$

 QQ

э

- Pseudo-collars are generalizations of collar structures on the boundary of a manifold
- \bullet A homotopy collar is a neighborhood of infinity U with $\partial U \hookrightarrow U$ a homotopy equivalence

 $\mathbb{R}^d \times \mathbb{R}^d \xrightarrow{\mathbb{R}^d} \mathbb{R}^d \times \mathbb{R}^d \xrightarrow{\mathbb{R}^d} \mathbb{R}^d$

- Pseudo-collars are generalizations of collar structures on the boundary of a manifold
- \bullet A homotopy collar is a neighborhood of infinity U with $\partial U \hookrightarrow U$ a homotopy equivalence
- A pseudo-collar is a neighborhood of infinity that admits arbitrarily small homotopy collar neighborhoods of infinity

AD ▶ ◀ ヨ ▶ ◀ ヨ ▶ │

- Pseudo-collars are generalizations of collar structures on the boundary of a manifold
- \bullet A homotopy collar is a neighborhood of infinity U with $\partial U \hookrightarrow U$ a homotopy equivalence
- A pseudo-collar is a neighborhood of infinity that admits arbitrarily small homotopy collar neighborhoods of infinity
- We would like to produce many examples of open, 1-ended, $(n + 1)$ -dimensional pseudo-collared manifolds

∢何 ▶ イヨ ▶ イヨ ▶ │

- Pseudo-collars are generalizations of collar structures on the boundary of a manifold
- \bullet A homotopy collar is a neighborhood of infinity U with $\partial U \hookrightarrow U$ a homotopy equivalence
- A pseudo-collar is a neighborhood of infinity that admits arbitrarily small homotopy collar neighborhoods of infinity
- We would like to produce many examples of open, 1-ended, $(n + 1)$ -dimensional pseudo-collared manifolds
- \bullet We could just keep changing the kernel group S at each stage, but we would like to keep the same kernel group S

メ母 トメ ミ トメ ミ トー

- Pseudo-collars are generalizations of collar structures on the boundary of a manifold
- \bullet A homotopy collar is a neighborhood of infinity U with $\partial U \hookrightarrow U$ a homotopy equivalence
- A pseudo-collar is a neighborhood of infinity that admits arbitrarily small homotopy collar neighborhoods of infinity
- We would like to produce many examples of open, 1-ended, $(n + 1)$ -dimensional pseudo-collared manifolds
- \bullet We could just keep changing the kernel group S at each stage, but we would like to keep the same kernel group S
- The idea is that there will be infintely many outer automorphisms, so we can form infintely many semi-direct products, each with a different outer automorphism

メタトメミトメミト

 2990

 \equiv

- Pseudo-collars are generalizations of collar structures on the boundary of a manifold
- \bullet A homotopy collar is a neighborhood of infinity U with $\partial U \hookrightarrow U$ a homotopy equivalence
- A pseudo-collar is a neighborhood of infinity that admits arbitrarily small homotopy collar neighborhoods of infinity
- We would like to produce many examples of open, 1-ended, $(n + 1)$ -dimensional pseudo-collared manifolds
- \bullet We could just keep changing the kernel group S at each stage, but we would like to keep the same kernel group S
- The idea is that there will be infintely many outer automorphisms, so we can form infintely many semi-direct products, each with a different outer automorphism
- This is one advantage of using semi-direct products over direct products

メタトメミトメミト

 2990

 \equiv

Let M be a manifold of dimension $n \geq 6$ with fundamental group Z. Let P be a finitely presented, superperfect, centerless, Hopfian group with torsion elements of infinitely many different orders, and let $S = P * P$. Then there are uncountably many $(n+1)$ -dimensional, pseudo-collarable, 1-ended manifolds V with boundary M

Let M be a manifold of dimension $n \geq 6$ with fundamental group Z. Let P be a finitely presented, superperfect, centerless, Hopfian group with torsion elements of infinitely many different orders, and let $S = P * P$. Then there are uncountably many $(n+1)$ -dimensional, pseudo-collarable, 1-ended manifolds V with boundary M

 V will break up into semi-s-cobordisms (W_j, M_{j-1}, M_j) , where $G_j \cong S \rtimes G_{j-1}, G_j = \pi_1(M_j)$

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶ ...

Let M be a manifold of dimension $n \geq 6$ with fundamental group Z. Let P be a finitely presented, superperfect, centerless, Hopfian group with torsion elements of infinitely many different orders, and let $S = P * P$. Then there are uncountably many $(n+1)$ -dimensional, pseudo-collarable, 1-ended manifolds V with boundary M

- V will break up into semi-s-cobordisms (W_j, M_{j-1}, M_j) , where $G_j \cong S \rtimes G_{j-1}, G_j = \pi_1(M_j)$
- Each G_i will, in fact, be isomorphic to $(S \times S \times \ldots \times S) \rtimes \mathbb{Z}$

∢ 何 ▶ ((手) ((手) ()

Let M be a manifold of dimension $n \geq 6$ with fundamental group Z. Let P be a finitely presented, superperfect, centerless, Hopfian group with torsion elements of infinitely many different orders, and let $S = P * P$. Then there are uncountably many $(n + 1)$ -dimensional, pseudo-collarable, 1-ended manifolds V with boundary M

- V will break up into semi-s-cobordisms (W_j, M_{j-1}, M_j) , where $G_j \cong S \rtimes G_{j-1}, G_j = \pi_1(M_j)$
- Each G_i will, in fact, be isomorphic to $(S \times S \times \ldots \times S) \rtimes \mathbb{Z}$
- We will produce different $\mathit{G_j}$'s by varying the outer actions, a technical part of semi-direct products, while keeping the quotient group, $\mathbb Z$, and kernel group, S , essentially constant

イロメ イ母メ イヨメ イヨメート

Let M be a manifold of dimension $n \geq 6$ with fundamental group Z. Let P be a finitely presented, superperfect, centerless, Hopfian group with torsion elements of infinitely many different orders, and let $S = P * P$. Then there are uncountably many $(n + 1)$ -dimensional, pseudo-collarable, 1-ended manifolds V with boundary M

- V will break up into semi-s-cobordisms (W_j, M_{j-1}, M_j) , where $G_j \cong S \rtimes G_{j-1}, G_j = \pi_1(M_j)$
- Each G_i will, in fact, be isomorphic to $(S \times S \times \ldots \times S) \rtimes \mathbb{Z}$
- We will produce different $\mathit{G_j}$'s by varying the outer actions, a technical part of semi-direct products, while keeping the quotient group, $\mathbb Z$, and kernel group, S, essentially constant
- We will produce one V for each increasing sequence of prime numbers ▶ K部 ▶ K 君 X K 君 X / 君 / 1990

Existence of Non-Pseudo-Collarable "Nice" Manifolds

We also show that not all ends of even "nice" manifolds are pseudo-collarable

伊 ▶ イヨ ▶ イヨ ▶

 QQ

э

Existence of Non-Pseudo-Collarable "Nice" Manifolds

We also show that not all ends of even "nice" manifolds are pseudo-collarable

Theorem (R., 2010)

Let Mⁿ be an orientable, closed manifold ($n \geq 6$) such that $\pi_1(M)$ contains an element to of infinite order and $\pi_1(M)$ is hypo-Abelian. Then there exists a 1-ended, orientable manifold V^{n+1} with $\partial V = M$ in which all clean neighborhoods of infinity have finite homotopy type, but which does not have perfectly semistable fundamental group at infinity. Thus, V^{n+1} is absolutely inward tame but not pseudocollable.

CARD AREA

Existence of Non-Pseudo-Collarable "Nice" Manifolds

We also show that not all ends of even "nice" manifolds are pseudo-collarable

Theorem (R., 2010)

Let Mⁿ be an orientable, closed manifold ($n \geq 6$) such that $\pi_1(M)$ contains an element to of infinite order and $\pi_1(M)$ is hypo-Abelian. Then there exists a 1-ended, orientable manifold V^{n+1} with $\partial V = M$ in which all clean neighborhoods of infinity have finite homotopy type, but which does not have perfectly semistable fundamental group at infinity. Thus, V^{n+1} is absolutely inward tame but not pseudocollable.

• A group G is hypo-Abelian if its perfect core, the largest perfect subgroup (necessarily normal) $\langle e \rangle$.

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶ ...

 \bullet For $Q \cong 1$, this result was already known, as a corollary to Kervaire's Theorem that every homology sphere bounds a contractible manifold.

医阿雷氏阿雷氏

- For $Q \cong 1$, this result was already known, as a corollary to Kervaire's Theorem that every homology sphere bounds a contractible manifold.
- However, we supply a new proof of this fact.

- 4 重 8 - 4 重 8

• Sketch of Proof

医间周的间周的

 299

э

- Sketch of Proof
- \bullet Begin by crossing N with \mathbb{I} .

- イヨメ イヨメ

State

 QQ
- Sketch of Proof
- Begin by crossing N with \mathbb{I} .
- Let $Q \cong <\alpha_1,\ldots,\alpha_{k_1}|r_1,\ldots,r_{l_1}>$ be a presentation for Q .

医阿里氏阿里氏

 2990

- Sketch of Proof
- Begin by crossing N with \mathbb{I} .
- Let $Q \cong <\alpha_1,\ldots,\alpha_{k_1}|r_1,\ldots,r_{l_1}>$ be a presentation for Q .
- Let $P \cong $\beta_1, \ldots, \beta_{k_2} | s_1, \ldots, s_{l_2} > b$ e a presentation for P .$

No. A THE NEW YORK THE REAL

- Sketch of Proof
- Begin by crossing N with \mathbb{I} .
- Let $Q \cong <\alpha_1,\ldots,\alpha_{k_1}|r_1,\ldots,r_{l_1}>$ be a presentation for Q .
- Let $P \cong $\beta_1, \ldots, \beta_{k_2} | s_1, \ldots, s_{l_2} > b$ e a presentation for P .$
- Take a small disk D inside of $N \times \{1\}$.

in the state of the

- Sketch of Proof
- Begin by crossing N with \mathbb{I} .
- Let $Q \cong <\alpha_1,\ldots,\alpha_{k_1}|r_1,\ldots,r_{l_1}>$ be a presentation for Q .
- Let $P \cong $\beta_1, \ldots, \beta_{k_2} | s_1, \ldots, s_{l_2} > b$ e a presentation for P .$
- Take a small disk D inside of $N \times \{1\}$.
- Attach trivial 1-handles inside the disk for each generator β of P.

No. 2 Report Follows

- Sketch of Proof
- Begin by crossing N with \mathbb{I} .
- Let $Q \cong <\alpha_1,\ldots,\alpha_{k_1}|r_1,\ldots,r_{l_1}>$ be a presentation for Q .
- Let $P \cong $\beta_1, \ldots, \beta_{k_2} | s_1, \ldots, s_{l_2} > b$ e a presentation for P .$
- Take a small disk D inside of $N \times \{1\}$.
- Attach trivial 1-handles inside the disk for each generator β of P.
- Attach 2-handles across the disk for each relator s of P.

CALCER AND A REPORT

As a corollary to the Solution to the Group Extension Problem, since we are using the trivial 2nd homology element, for each element $\beta_i\alpha_j$ in \bm{G} , there is a word $w_{i,j}$ in the β 's so that $\beta_i \alpha_j = \alpha_j w_{i,j}$.

つへへ

- As a corollary to the Solution to the Group Extension Problem, since we are using the trivial 2nd homology element, for each element $\beta_i\alpha_j$ in \bm{G} , there is a word $w_{i,j}$ in the β 's so that $\beta_i \alpha_j = \alpha_j w_{i,j}$.
- Attach a 2-handle across each $\beta_i\alpha_j(\alpha_j w_{i,j})^{-1}$ (these will leak outside the disk).

つくい

- As a corollary to the Solution to the Group Extension Problem, since we are using the trivial 2nd homology element, for each element $\beta_i\alpha_j$ in \bm{G} , there is a word $w_{i,j}$ in the β 's so that $\beta_i \alpha_j = \alpha_j w_{i,j}$.
- Attach a 2-handle across each $\beta_i\alpha_j(\alpha_j w_{i,j})^{-1}$ (these will leak outside the disk).
- \bullet Now, we have a cobordism (W_1, N, M) with $\pi_1(N) \cong Q$, $\pi_1(W_1) \cong G$, and $\pi_1(M) \cong G$.

桐 レースモ レースモ レー

 200

Lemma

Let $\overline{W_1}$ be the cover of W_1 with fund gp P (and covering transformation group Q). Then we may arrange the handles attached to $\overline{W_1}$ across \overline{M} so that they project down equivariantly via the covering map to corresponding handles attached to W across M.

So, now the relative handlebody chain complex of $(\overline{W_1}, N)$ looks like

$$
\to C_3(\overline{W_1}, \widetilde{N}; \mathbb{Z}) \longrightarrow C_2(\overline{W_1}, \widetilde{N}; \mathbb{Z}) \longrightarrow C_1(\overline{W_1}, \widetilde{N}; \mathbb{Z}) \longrightarrow C_0(\overline{W_1}, \widetilde{N}; \mathbb{Z}) \longrightarrow
$$

つくい

• Call
$$
A = \bigoplus_{i=1}^{l_2} \mathbb{Z} Q
$$
 and call $B = \bigoplus_{j=1}^{k_2} \mathbb{Z} Q$.

人名英格兰人姓氏

 \sim

 299

э

Пb.

\n- Call
$$
A = \bigoplus_{i=1}^{l_2} \mathbb{Z}Q
$$
 and call $B = \bigoplus_{j=1}^{k_2} \mathbb{Z}Q$.
\n- Since $H_1(\overline{W_1}) = 0$, $\partial|_A$ is onto.
\n

御 ▶ すき ▶ すき ▶

 299

э

- Call $A=\bigoplus_{i=1}^{l_2}{\mathbb Z} Q$ and call $B=\bigoplus_{j=1}^{k_2}{\mathbb Z} Q$.
- Since $H_1(\overline{W_1}) = 0$, $\partial|_A$ is onto.
- Clearly, B is a free $\mathbb{Z}Q$ -module.

Lemma

Let A, B, and C be R-modules, with B a free R-module (on the basis F), and let $\Theta: A {\bigoplus} B \to C$ be an R-module homomorphism. Suppose $\Theta|_A$ is onto. Then ker $(\Theta) \cong \ker(\Theta|_A) \bigoplus B$.

母 ▶ ヨ ヨ ▶ ヨ ヨ ▶

 200

\bullet So, ker(∂) is a free, finitely generated $\mathbb{Z}Q$ -module

医阿里氏阿里氏

 QQ

 \bullet So, ker(∂) is a free, finitely generated $\mathbb{Z}Q$ -module • Also, $\pi_1(\overline{W_1})$ is superperfect.

一 4 三 下

 QQ

<u>Lemma (Superp</u>erfect Groups Have Spherical Elements for H_2)

Let P be a superperfect group. Let M be a manifold which has fundamental group isomorphic to P. Then any element of $H_2(M)$ can be killed by attaching 3-handles.

This lemma may be seen as a direct corollary of the definition of superperfect.

• So, we can make
$$
H_*(\overline{W_1}, \widetilde{N}) = 0
$$
.

医间距的间距

 299

э -b

- So, we can make $H_*(\overline{W_1}, \widetilde{N}) = 0$.
- Unfortunately, $\pi_1(W_1) \cong G$, not Q.

 QQ

• So, we add canceling 2-, 3-, and 4-handles for all the 1-, 2-, and 3-handles we added to W.

個 ト イ君 ト イ君 ト

 QQ

э

- So, we add canceling 2-, 3-, and 4-handles for all the 1-, 2-, and 3-handles we added to W.
- This creates a cobordism (W_2, M, N) with $\,W_1 \bigcup_M W_2$ homeomorphic to $N \times \mathbb{I}$.

伊 ▶ イヨ ▶ イヨ ▶

 2990

- So, we add canceling 2-, 3-, and 4-handles for all the 1-, 2-, and 3-handles we added to W.
- This creates a cobordism (W_2, M, N) with $\,W_1 \bigcup_M W_2$ homeomorphic to $N \times \mathbb{I}$.
- Finally, read W_2 from right to left.

医阿雷氏阿雷氏

 2990

- So, we add canceling 2-, 3-, and 4-handles for all the 1-, 2-, and 3-handles we added to W.
- This creates a cobordism (W_2, M, N) with $\,W_1 \bigcup_M W_2$ homeomorphic to $N \times \mathbb{I}$.
- Finally, read W_2 from right to left.
- This creates a cobordism (W_3 , N, M) with $[(n+1)-4]$ -, $[(n+1)-3]$ -, and $[(n+1)-2]$ -handles added.

何 ▶ (ヨ) (ヨ) (

- So, we add canceling 2-, 3-, and 4-handles for all the 1-, 2-, and 3-handles we added to W.
- This creates a cobordism (W_2, M, N) with $\,W_1 \bigcup_M W_2$ homeomorphic to $N \times \mathbb{I}$.
- Finally, read W_2 from right to left.
- This creates a cobordism (W_3 , N, M) with $[(n+1)-4]$ -, $[(n+1)-3]$ -, and $[(n+1)-2]$ -handles added.
- This means $\pi_1(W_3) \cong Q$, as $n \geq 6$.

伊 ▶ イヨ ▶ イヨ ▶ │ ヨ

• Now,
$$
\pi_1(\widetilde{W}_3) \cong 1
$$
.

医间距的间距

 299

э -b

- Now, $\pi_1(W_3) \cong 1$.
- Also, $H^*(W_3, N) = 0$, by a straight-forward argument using the fact that $H_*(W_3, \widetilde{N}) = 0$.

つへへ

- Now, $\pi_1(W_3) \cong 1$.
- Also, $H^*(W_3, N) = 0$, by a straight-forward argument using the fact that $H_*(W_3, N) = 0$.
- So, by the relative Hurewicz theorem, $\pi_n(W_3, N) = \pi_n(W_3, N) = 0$ for $n \ge 2$.

つくい

- Now, $\pi_1(W_3) \cong 1$.
- Also, $H^*(W_3, N) = 0$, by a straight-forward argument using the fact that $H_*(W_3, N) = 0$.
- So, by the relative Hurewicz theorem, $\pi_n(W_3, N) = \pi_n(W_3, N) = 0$ for $n > 2$.
- \bullet This proves W_3 strong deformation retracts onto N

つくい

- Now, $\pi_1(W_3) \cong 1$.
- Also, $H^*(W_3, N) = 0$, by a straight-forward argument using the fact that $H_*(W_3, N) = 0$.
- So, by the relative Hurewicz theorem, $\pi_n(W_3, N) = \pi_n(W_3, N) = 0$ for $n > 2$.
- \bullet This proves W_3 strong deformation retracts onto N
- \bullet Because of the special nature of the group extension G , by an otherwise well-known technique (Rourke & Sanderson, P. 90), and by a few theorems of Cohen, we may adjust the torsion on M so that $N \hookrightarrow W_3$ is a simple homotopy equivalence.

御 ト イヨ ト イヨ トー

- Now, $\pi_1(W_3) \cong 1$.
- Also, $H^*(W_3, N) = 0$, by a straight-forward argument using the fact that $H_*(W_3, N) = 0$.
- So, by the relative Hurewicz theorem, $\pi_n(W_3, N) = \pi_n(W_3, N) = 0$ for $n > 2$.
- \bullet This proves W_3 strong deformation retracts onto N
- \bullet Because of the special nature of the group extension G , by an otherwise well-known technique (Rourke & Sanderson, P. 90), and by a few theorems of Cohen, we may adjust the torsion on M so that $N \hookrightarrow W_3$ is a simple homotopy equivalence.
- This concludes the proof

母 ▶ イヨ ▶ イヨ ▶ │

つくい

• We now return to the theorem about uncoutably many pseudo-collars with similar pro-fundamental group structure at infinity

つへへ

- We now return to the theorem about uncoutably many pseudo-collars with similar pro-fundamental group structure at infinity
- There actually is a finitely presented, superperfect, centerless, Hopfian group with torsion elements of infinitely many different orders

つくい

- We now return to the theorem about uncoutably many pseudo-collars with similar pro-fundamental group structure at infinity
- There actually is a finitely presented, superperfect, centerless, Hopfian group with torsion elements of infinitely many different orders
- Thompson's group V fits the bill

- We now return to the theorem about uncoutably many pseudo-collars with similar pro-fundamental group structure at infinity
- There actually is a finitely presented, superperfect, centerless, Hopfian group with torsion elements of infinitely many different orders
- Thompson's group V fits the bill
- It is fintely presented, superperfect, simple (hence centerless and Hopfian - also perfect), and contains a copy of each S_n , hence of each finite group, hence torsion elements of each order

A & Y B & Y B &

 200

• Of course, it's pretty easy to whip out a 1-ended, pseudo-collarable manifold V: you just keep taking larger and larger $\,G\!j}$'s and $\,M\!j$'s and glue the cobordisms together

つへへ

- Of course, it's pretty easy to whip out a 1-ended, pseudo-collarable manifold V: you just keep taking larger and larger $\,G\!j}$'s and $\,M\!j$'s and glue the cobordisms together
- The hard part is proving that the resulting pro-fundamental group systems at infinity are all non-isomorphic

医阿里氏阿里氏

つくい
- Of course, it's pretty easy to whip out a 1-ended, pseudo-collarable manifold V: you just keep taking larger and larger $\,G\!j}$'s and $\,M\!j$'s and glue the cobordisms together
- The hard part is proving that the resulting pro-fundamental group systems at infinity are all non-isomorphic
- For example, if $Q = \prod_{i=1}^{\infty} \mathbb{Z}$, $K_1 = \mathbb{Z}$, and $K_2 = \mathbb{Z} \times \mathbb{Z}$, then $G_1 = K_1 \times Q$ and $G_2 = K_2 \times Q$ are isomorphic, even though $K_1 \not\simeq K_2$

∢ 何 ゝ ∢ ヨ ゝ ∢ ヨ ゝ …

 Ω

 \bullet We would like to relax the constraint on P that it have torsion elements of infinitely many different orders to that it contains a countably infinite subset U with the property that there is no isomorphism ψ of P which carries u_i onto u_j for u_i and u_j distinct elements of U , but have run into some technical difficulties

- \bullet We would like to relax the constraint on P that it have torsion elements of infinitely many different orders to that it contains a countably infinite subset U with the property that there is no isomorphism ψ of P which carries u_i onto u_j for u_i and u_j distinct elements of U , but have run into some technical difficulties
- \bullet This would open up more groups as possible candidates for P, for example, all fundamental groups of hyperbolic homology spheres of dimension > 3

A & Y B & Y B &

• Sketch of Proof

医阿里氏阿里氏

 299

э

Sketch of Proof

Lemma

Let A, B, C, and D be nontrivial groups and ley $\phi: A \times B \rightarrow C * D$ be a epimorphism. Then either $\phi(A \times \{1\})$ is all of $C * D$ and $\phi({1} \times B)$ is trivial or $\phi(A \times {1})$ is trivial and $\phi({1} \times B)$ is all of $C * D$

伊 ▶ イヨ ▶ イヨ ▶

 200

Sketch of Proof

Lemma

Let A, B, C, and D be nontrivial groups and ley $\phi: A \times B \to C * D$ be a epimorphism. Then either $\phi(A \times \{1\})$ is all of $C * D$ and $\phi({1} \times B)$ is trivial or $\phi(A \times {1})$ is trivial and $\phi({1} \times B)$ is all of $C * D$

• Remark This is really the grain of sand that led to the pearl that is the theorem. Everything must commute and the domain, and nothing can commute in the range

母 ▶ ヨ ヨ ▶ ヨ ヨ ▶

Sketch of Proof

Lemma

Let A, B, C , and D be nontrivial groups and ley $\phi: A \times B \to C * D$ be a epimorphism. Then either $\phi(A \times \{1\})$ is all of $C * D$ and $\phi({1} \times B)$ is trivial or $\phi(A \times {1})$ is trivial and $\phi({1} \times B)$ is all of $C * D$

- Remark This is really the grain of sand that led to the pearl that is the theorem. Everything must commute and the domain, and nothing can commute in the range
- The proof uses the fact that a free product is never an internal direct product

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

 200

Lemma (The Straightening-Up Lemma $(n = m)$)

Let $n = m$, let S be a free product, and let ψ : $S \times S \times ... \times S$ (n copies) \rightarrow $S \times S \times ... \times S$ (m copies) be an isomorphism. Write $\psi_{\boldsymbol{i},\boldsymbol{j}}$ for $\pi_{\boldsymbol{S}_{\boldsymbol{j}}}\circ\psi|_{\boldsymbol{S}_{\boldsymbol{i}}}.$ Then ψ splits as n isomorphisms $\psi_{\pmb{i},\sigma(\pmb{i})}$, with σ a permutation, with all other $\psi_{\pmb{i},\pmb{j}}$'s being the trivial map

Lemma (The Straightening-Up Lemma $(n = m)$)

Let $n = m$, let S be a free product, and let ψ : $S \times S \times ... \times S$ (n copies) \rightarrow $S \times S \times ... \times S$ (m copies) be an isomorphism. Write $\psi_{\boldsymbol{i},\boldsymbol{j}}$ for $\pi_{\boldsymbol{S}_{\boldsymbol{j}}}\circ\psi|_{\boldsymbol{S}_{\boldsymbol{i}}}.$ Then ψ splits as n isomorphisms $\psi_{\pmb{i},\sigma(\pmb{i})}$, with σ a permutation, with all other $\psi_{\pmb{i},\pmb{j}}$'s being the trivial map

Lemma (The Straightening-Up Corollary $(n > m)$)

Let $n > m$, let S be a Hopfian free product, and let ψ : $S \times S \times ... \times S$ (n copies) \rightarrow $S \times S \times ... \times S$ (m copies) be an epimorphism. Write $\psi_{\boldsymbol{i},\boldsymbol{j}}$ for $\pi_{\boldsymbol{S}_{\boldsymbol{j}}}\circ\psi|_{\boldsymbol{S}_{\boldsymbol{i}}}.$ Then ψ splits as m isomorphisms $\psi_{\sigma^{-1}(i),i}$, with σ a permutation, with all other $\psi_{i,j}$'s being the trivial map

∢ ロ ⊁ (何) (ミ) (ミ) (ニ)

• For the next 2 Lemmas, we have

医毛囊 医牙骨

- For the next 2 Lemmas, we have
- S a free product of 2 copies of the same group superperfect $P_1 * P_2$ (centerless and Hopfian for the Corollary) with an infinite list of torsion elements of different orders (all chosen from P_1)

つくい

- For the next 2 Lemmas, we have
- S a free product of 2 copies of the same group superperfect $P_1 * P_2$ (centerless and Hopfian for the Corollary) with an infinite list of torsion elements of different orders (all chosen from P_1)

$$
\quad \bullet \ \ G_1 = (S \times S \times \ldots \times S) \rtimes_{\phi_{u_1}, \phi_{u_2}, \ldots, \phi_{u_n}} \mathbb{Z} \ \text{and}
$$

つくい

- For the next 2 Lemmas, we have
- S a free product of 2 copies of the same group superperfect $P_1 * P_2$ (centerless and Hopfian for the Corollary) with an infinite list of torsion elements of different orders (all chosen from P_1)
- $\mathsf{G}_1 = (\mathsf{S} \times \mathsf{S} \times \ldots \times \mathsf{S}) \rtimes_{\phi_{u_1}, \phi_{u_2}, \ldots, \phi_{u_n}} \mathbb{Z}$ and
- $G_2 = (S \times S \times \ldots \times S) \rtimes_{\phi_{v_1}, \phi_{v_2}, \ldots, \phi_{v_m}} \mathbb{Z}$ are semi-direct products

 200

- For the next 2 Lemmas, we have
- S a free product of 2 copies of the same group superperfect $P_1 * P_2$ (centerless and Hopfian for the Corollary) with an infinite list of torsion elements of different orders (all chosen from P_1)
- $\mathsf{G}_1 = (\mathsf{S} \times \mathsf{S} \times \ldots \times \mathsf{S}) \rtimes_{\phi_{u_1}, \phi_{u_2}, \ldots, \phi_{u_n}} \mathbb{Z}$ and
- $G_2 = (S \times S \times \ldots \times S) \rtimes_{\phi_{v_1}, \phi_{v_2}, \ldots, \phi_{v_m}} \mathbb{Z}$ are semi-direct products

where ϕ_{u_i} is the outer action of $\mathbb Z$ on $\mathcal S$ given by $\phi_{u_i}(z)(p) = \begin{cases} p & \text{if } p \in P_1 \\ \frac{p}{z-1} & \text{if } p \in P_2 \end{cases}$ u_i^{-z} i_j^{-z} pu_i if $p \in P_2$

何 ▶ スミ ▶ スミ ▶ │ ヨ

 200

- For the next 2 Lemmas, we have
- S a free product of 2 copies of the same group superperfect $P_1 * P_2$ (centerless and Hopfian for the Corollary) with an infinite list of torsion elements of different orders (all chosen from P_1)
- $\mathsf{G}_1 = (\mathsf{S} \times \mathsf{S} \times \ldots \times \mathsf{S}) \rtimes_{\phi_{u_1}, \phi_{u_2}, \ldots, \phi_{u_n}} \mathbb{Z}$ and
- $G_2 = (S \times S \times \ldots \times S) \rtimes_{\phi_{v_1}, \phi_{v_2}, \ldots, \phi_{v_m}} \mathbb{Z}$ are semi-direct products

where ϕ_{u_i} is the outer action of $\mathbb Z$ on $\mathcal S$ given by $\phi_{u_i}(z)(p) = \begin{cases} p & \text{if } p \in P_1 \\ \frac{p}{z-1} & \text{if } p \in P_2 \end{cases}$ u_i^{-z} i_j^{-z} pu_i if $p \in P_2$

(This particular kind of outer action is called a partial conjugation) イヤト イヨメ イヨメ

 Ω

Lemma (The Conder Isomorphism Lemma $(n = m)$)

Let $n = m$, and let $\theta : G_1 \rightarrow G_2$ be an isomorphism. Then θ restricts to an isomorphism on the commutator subgroup $K = S \times S \times \ldots \times S$, and S factors which correspond by the Straightening-Up Lemma ($n = m$) have ϕ_u 's with the same order in the definition of their semi-direct product

Lemma (The Conder Isomorphism Lemma $(n = m)$)

Let n = m, and let θ : $G_1 \rightarrow G_2$ be an isomorphism. Then θ restricts to an isomorphism on the commutator subgroup $K = S \times S \times ... \times S$, and S factors which correspond by the Straightening-Up Lemma ($n = m$) have ϕ_u 's with the same order in the definition of their semi-direct product

Lemma (The Conder Isomorphism Corollary $(n > m)$)

Let $n > m$, and let $\theta : G_1 \to G_2$ be an epimorphism. Then θ restricts to an epimorphism on the commutator subgroup $K = S \times S \times ... \times S$, and S factors which correspond by the Straightening-Up Corollary ($n > m$) have ϕ_u 's with the same order in the definition of their semi-direct product

∢ ロ ▶ (何) (ミ) (ミ)

Now, for Ω the collection of all increasing sequences of prime numbers, we have the following tree

∢ 重 ≯

Now, for $Ω$ the collection of all increasing sequences of prime numbers, we have the following tree

つくい

We start at the root of the tree with $\mathbb Z$, and keep blowing this quotient group up by a semi-direct product with S at each node

化重变 化重

We start at the root of the tree with $\mathbb Z$, and keep blowing this quotient group up by a semi-direct product with S at each node

This gives rise to binary tree of group extensions ...

∢ 重 ≯

This gives rise to binary tree of group extensions ...

$$
G_{(19)} G_{(2,19)} G_{(2,3,19)} G_{(2,3,19)} G_{(2,3,10)} G_{(2,10)} G_{(2,11)} G_{(2,12)} G_{(2,13)} G_{(2)}
$$

∢ 重 ≯

... and 1-sided s-cobordisms

医毛菌 的复数

Sales

 290

э

... and 1-sided s-cobordisms

$$
M_{(19)}\n M_{(2,19)}\n M_{(2,3,19)}\n M_{(2,3,19)}\n M_{(17)}\n M_{(2,17)}\n M_{(2,3,17)}\n M_{(2,3,19)}\n M_{(
$$

個 ト イ君 ト イ君 ト

 299

э

• Now, for each $\omega \in \Omega$, let (ω, n) be the corresponding finite sequence of length n

- 4 国 8 - 4 国 8

- Now, for each $\omega \in \Omega$, let (ω, n) be the corresponding finite sequence of length n
- Corresponding to each $\omega \in \Omega$, we have an inverse sequence of groups $(\mathit{G}_{(\omega,n)},\alpha_{(\omega,n)})$

- Now, for each $\omega \in \Omega$, let (ω, n) be the corresponding finite sequence of length n
- Corresponding to each $\omega \in \Omega$, we have an inverse sequence of groups $(\mathit{G}_{(\omega,n)},\alpha_{(\omega,n)})$
- Two inverse sequences are pro-isomorphic if and only if, after passing to subsequences, they may be put into a ladder diagram

 Ω

• To finish off the proof, let ω and η be distinct sequences in Ω

- イヨメ イヨ

- To finish off the proof, let ω and η be distinct sequences in Ω
- Suppose ω and η agree up to some level n_0

- 4 重 8 3 4 重 8

- To finish off the proof, let ω and η be distinct sequences in Ω
- Suppose ω and η agree up to some level n_0
- \bullet Consider the 1-ended, pseudo-collarable ($n+1$)-manifolds V_ω and V_n

- 4 重 8 3 4 重 8

- To finish off the proof, let ω and η be distinct sequences in Ω
- Suppose ω and η agree up to some level n_0
- Consider the 1-ended, pseudo-collarable $(n + 1)$ -manifolds V_{ω} and V_n
- Suppose, after passing to subsequences, we have their pro-fundamental group systems at infinity fitting into a ladder diagram

つくい

Lemma

By passing to a further subsequence if necessary, we may assume $n_0 < m_1 < n_2 < m_3 < \ldots$

伊 ▶ イヨ ▶ イヨ ▶

Lemma

By passing to a further subsequence if necessary, we may assume $n_0 < m_1 < n_2 < m_3 < \ldots$

• Now, g_{n2} fits the form for the Conder Isomorphism Corollary $(n > m)$, so it must be onto m_1 copies of S and corresponding copies of S must have ϕ_{u_i} 's withe same order

伊 ▶ イヨ ▶ イヨ ▶

つくい

Lemma

By passing to a further subsequence if necessary, we may assume $n_0 < m_1 < n_2 < m_3 < \ldots$

- Now, g_{n2} fits the form for the Conder Isomorphism Corollary $(n > m)$, so it must be onto m_1 copies of S and corresponding copies of S must have ϕ_{u_i} 's withe same order
- But, ω and η only agree up to n_0 and cannot have ϕ_{u_i} 's with the same orders on the remaining $m_1 - n_0$ corresponding copies of S!

④ イヨメ イヨメー

 200

Lemma

By passing to a further subsequence if necessary, we may assume $n_0 < m_1 < n_2 < m_3 < \ldots$

- Now, g_{n2} fits the form for the Conder Isomorphism Corollary $(n > m)$, so it must be onto m_1 copies of S and corresponding copies of S must have ϕ_{u_i} 's withe same order
- But, ω and η only agree up to n_0 and cannot have ϕ_{u_i} 's with the same orders on the remaining $m_1 - n_0$ corresponding copies of S!
- This concludes the proof

 $\langle \bigcap \mathbb{P} \rangle$ \rightarrow $\langle \bigcap \mathbb{P} \rangle$ \rightarrow $\langle \bigcap \mathbb{P} \rangle$

 200
Sketch of Proof

医毛囊 医牙骨

 2990

э

- Sketch of Proof
- For the inward tame manifold that is not pseudo-collarable, we start with a manifold that has a hypo-Abelian fundamental group G_0 with an element of infinite order t.

- 4 重 8 - 4 重 8

 200

- Sketch of Proof
- For the inward tame manifold that is not pseudo-collarable, we start with a manifold that has a hypo-Abelian fundamental group G_0 with an element of infinite order t.

• Write
$$
G_0 = \langle A_0 | R_0 \rangle
$$

- 4 重 8 - 4 重 8

 200

- Sketch of Proof
- For the inward tame manifold that is not pseudo-collarable, we start with a manifold that has a hypo-Abelian fundamental group G_0 with an element of infinite order t.
- Write $G_0 = \langle A_0 | R_0 \rangle$
- Create a new group $G_1 = \langle A_0, t_1 | R_0, t_1 = t_0 t_1^2 t_0 \rangle$, where t_0 is the element of infinite order in G_0
- Sketch of Proof
- For the inward tame manifold that is not pseudo-collarable, we start with a manifold that has a hypo-Abelian fundamental group G_0 with an element of infinite order t.

• Write
$$
G_0 = \langle A_0 | R_0 \rangle
$$

- Create a new group $G_1 = \langle A_0, t_1 | R_0, t_1 = t_0 t_1^2 t_0 \rangle$, where t_0 is the element of infinite order in G_0
- Setting $A_1 = A_0 \cup \{t_1\}$ and $R_1 = R_0 \cup \{t_1 = t_0t_1^2t_0\}$, we continue inductively setting $G_j = \langle A_{j-1}, t_j | R_{j-1}, t_j = t_{j-1}t_j^2 t_{j-1} \rangle$

A & Y E & Y E & T

By a theorem of Howie, as we can write $\mathit{G_j} = \mathit{G_{j-1}} \ast_{\langle t_j \rangle} \mathit{I_2},$ where I_2 is the Baumslag-Solitar group $\langle t, x \mid t = x t^2 x \rangle$, G_j is hypo-Abelian.

NORTH AT A

- By a theorem of Howie, as we can write $\mathit{G_j} = \mathit{G_{j-1}} \ast_{\langle t_j \rangle} \mathit{I_2},$ where I_2 is the Baumslag-Solitar group $\langle t, x \mid t = x t^2 x \rangle$, G_j is hypo-Abelian.
- Now, we produce the manifold V by starting with the manifold M_0 that has G_0 as its fundamental group, forming a cobordism (W, M_0, M_1) , where M_1 has G_1 as its fundamental group, and proceeding inductively.

Alba Esta Esta

 200

- By a theorem of Howie, as we can write $\mathit{G_j} = \mathit{G_{j-1}} \ast_{\langle t_j \rangle} \mathit{I_2},$ where I_2 is the Baumslag-Solitar group $\langle t, x \mid t = x t^2 x \rangle$, G_j is hypo-Abelian.
- Now, we produce the manifold V by starting with the manifold M_0 that has G_0 as its fundamental group, forming a cobordism (W, M_0, M_1) , where M_1 has G_1 as its fundamental group, and proceeding inductively.
- First, cross M_0 with \mathbb{I} , add a trivially attached 1-handle α^1_1 representing t_1 and a 2-handle α_2^2 representing $t_1 = t_0 t_1^2 t_0$, where t_0 is a loop of infinite order in M_0 .

イ何 ト イヨ ト イヨ トー

• Then this cobordism (B_0, M_0, M_1) has fundamental group G_1 and it therefore not the cobordism we seek.

- Then this cobordism (B_0, M_0, M_1) has fundamental group G_1 and it therefore not the cobordism we seek.
- Attach a canceling handle for α^1_1 , β^2_1 , note that now α^2_2 is now trivially attached, and attach a canceling 3-handle $\beta_2^3.$

- Then this cobordism (B_0, M_0, M_1) has fundamental group G_1 and it therefore not the cobordism we seek.
- Attach a canceling handle for α^1_1 , β^2_1 , note that now α^2_2 is now trivially attached, and attach a canceling 3-handle $\beta_2^3.$
- Now, $B_0 \cup \beta_1^2 \cup \beta_2^3 = B_0 \cup_{M_1} W_0$, where (W_0, M_1, M_0) is $M_1 \times \mathbb{I}$ with β_1^2 and β_2^3 attached

- Then this cobordism (B_0, M_0, M_1) has fundamental group G_1 and it therefore not the cobordism we seek.
- Attach a canceling handle for α^1_1 , β^2_1 , note that now α^2_2 is now trivially attached, and attach a canceling 3-handle $\beta_2^3.$
- Now, $B_0 \cup \beta_1^2 \cup \beta_2^3 = B_0 \cup_{M_1} W_0$, where (W_0, M_1, M_0) is $M_1 \times \mathbb{I}$ with β_1^2 and β_2^3 attached
- Read W_0 upside-down, so that it becomes (W_0, M_0, M_1) , and W_0 looks like $M_0 \times \mathbb{I}$ with an $(n-3)$ -handle γ_2^{n-3} and an $(n-2)$ -handle γ_2^{n-2} attached

伊 ▶ イヨ ▶ イヨ ▶ │ ヨ

- Then this cobordism (B_0, M_0, M_1) has fundamental group G_1 and it therefore not the cobordism we seek.
- Attach a canceling handle for α^1_1 , β^2_1 , note that now α^2_2 is now trivially attached, and attach a canceling 3-handle $\beta_2^3.$
- Now, $B_0 \cup \beta_1^2 \cup \beta_2^3 = B_0 \cup_{M_1} W_0$, where (W_0, M_1, M_0) is $M_1 \times \mathbb{I}$ with β_1^2 and β_2^3 attached
- Read W_0 upside-down, so that it becomes (W_0, M_0, M_1) , and W_0 looks like $M_0 \times \mathbb{I}$ with an $(n-3)$ -handle γ_2^{n-3} and an $(n-2)$ -handle γ_2^{n-2} attached
- \bullet (W_0 , M_0 , M_1) is the cobordism we seek

何 ▶ スミ ▶ スミ ▶ │ ヨ

• Continue inductively forming (W_1, M_1, M_2) , (W_2, M_2, M_3) , ad nfinitum, and set $V = W_0 \cup_{M_1} W_1 \cup_{M_2} W_3 \ldots$

 QQ

- Continue inductively forming (W_1, M_1, M_2) , (W_2, M_2, M_3) , ad nfinitum, and set $V = W_0 \cup_{M_1} W_1 \cup_{M_2} W_3 \ldots$
- \bullet Then V has $G_0 \leftarrow G_1 \leftarrow G_2 \leftarrow \dots$ as its fundamental group system at infinity and $\partial V = M_0$

つへへ

- Continue inductively forming (W_1, M_1, M_2) , (W_2, M_2, M_3) , ad nfinitum, and set $V = W_0 \cup_{M_1} W_1 \cup_{M_2} W_3 \ldots$
- Then V has $G_0 \leftarrow G_1 \leftarrow G_2 \leftarrow \dots$ as its fundamental group system at infinity and $\partial V = M_0$
- Finally, if we set $N_i = W_i \cup_{M_i} W_{i+1} \cup_{M_{i+1}} W_{i+2} \ldots$ $N'_i = \beta_i^2 \cup N_i$, and $M'_i = \beta_i^2 \cup M_i$, then $M'_i \hookrightarrow N'_i$ is a homotopy equivalence, so V is absolutely inward tame.

A & Y B & Y B &

- Continue inductively forming (W_1, M_1, M_2) , (W_2, M_2, M_3) , ad nfinitum, and set $V = W_0 \cup_{M_1} W_1 \cup_{M_2} W_3 \ldots$
- Then V has $G_0 \leftarrow G_1 \leftarrow G_2 \leftarrow \dots$ as its fundamental group system at infinity and $\partial V = M_0$
- Finally, if we set $N_i = W_i \cup_{M_i} W_{i+1} \cup_{M_{i+1}} W_{i+2} \ldots$ $N'_i = \beta_i^2 \cup N_i$, and $M'_i = \beta_i^2 \cup M_i$, then $M'_i \hookrightarrow N'_i$ is a homotopy equivalence, so V is absolutely inward tame.
- This completes the proof.

A & Y B & Y B &

The End

THE END

Jeffrey Rolland Some Results on Pseudo-Collar Structures on High-Dimensional

メロメ メ都 メメ きょく ミメー

■■ $2Q$