Some Constructions of Pseudo-Collarable 1-Ended **Manifolds**

Jeffrey Rolland

Department of Mathematical Sciences University of Wisconsin–Milwaukee

June 12, 2014

Jeffrey Rolland [Some Constructions of Pseudo-Collarable 1-Ended Manifolds](#page-69-0)

つへへ

Quillen's plus construction is a way of taking a CW complex or manifold X whose fundamental group G contains a perfect normal subgroup P and creating a new CW complex or manifold X^+ whose fundamental group is simpler, namely $Q = G/P$

つへへ

- Quillen's plus construction is a way of taking a CW complex or manifold X whose fundamental group G contains a perfect normal subgroup P and creating a new CW complex or manifold X^+ whose fundamental group is simpler, namely $Q = G/P$
- If the object is a manifold, the plus construction creates a plus cobordism (W, X, X^+) between the two manifold with $X^+ \hookrightarrow W$ a simple homotopy equivalence which gives rise to a map f between the two manifolds

- Quillen's plus construction is a way of taking a CW complex or manifold X whose fundamental group G contains a perfect normal subgroup P and creating a new CW complex or manifold X^+ whose fundamental group is simpler, namely $Q = G/P$
- If the object is a manifold, the plus construction creates a plus cobordism (W, X, X^+) between the two manifold with $X^+ \hookrightarrow W$ a simple homotopy equivalence which gives rise to a map f between the two manifolds
- If the object is a CW complex, the Plus Construction simply create a map f between the two CW complexes

ALLEY LEV

- Quillen's plus construction is a way of taking a CW complex or manifold X whose fundamental group G contains a perfect normal subgroup P and creating a new CW complex or manifold X^+ whose fundamental group is simpler, namely $Q = G/P$
- If the object is a manifold, the plus construction creates a plus cobordism (W, X, X^+) between the two manifold with $X^+ \hookrightarrow W$ a simple homotopy equivalence which gives rise to a map f between the two manifolds
- If the object is a CW complex, the Plus Construction simply create a map f between the two CW complexes
- In either case, the map f is a $\mathbb{Z} Q$ -homology isomorphism

ALLEY LEV

• In previous work, we had discovered a partial reverse to Quillen's plus construction in the high-dimensional manifold category

 $\left\{ \begin{array}{ccc} \pm & \pm & \pm & \pm \end{array} \right.$

 $2Q$

- In previous work, we had discovered a partial reverse to Quillen's plus construction in the high-dimensional manifold category
- \bullet Let M be a manifold of dimension 6 or higher, with $\pi_1(M) \cong Q$

化重 网络重

 QQ

- In previous work, we had discovered a partial reverse to Quillen's plus construction in the high-dimensional manifold category
- \bullet Let M be a manifold of dimension 6 or higher, with $\pi_1(M) \cong Q$
- \bullet Let K be a finitely presented superperfect group

つへへ

- In previous work, we had discovered a partial reverse to Quillen's plus construction in the high-dimensional manifold category
- \bullet Let M be a manifold of dimension 6 or higher, with $\pi_1(M) \cong Q$
- \bullet Let K be a finitely presented superperfect group
- Let G be a semi-direct product of Q by K, $G = K \rtimes Q$

つへへ

- In previous work, we had discovered a partial reverse to Quillen's plus construction in the high-dimensional manifold category
- \bullet Let M be a manifold of dimension 6 or higher, with $\pi_1(M) \cong Q$
- \bullet Let K be a finitely presented superperfect group
- \bullet Let G be a semi-direct product of Q by K, $G = K \rtimes Q$
- \bullet (This means G satisfies $1 \to K \to G \to Q \to 1$, so G is a group extension of Q by K , with a special condition for how elements of Q multiply elements of K in G)

桐 レースモ レースモ レー

- In previous work, we had discovered a partial reverse to Quillen's plus construction in the high-dimensional manifold category
- \bullet Let M be a manifold of dimension 6 or higher, with $\pi_1(M) \cong Q$
- \bullet Let K be a finitely presented superperfect group
- Let G be a semi-direct product of Q by K, $G = K \rtimes Q$
- \bullet (This means G satisfies $1 \to K \to G \to Q \to 1$, so G is a group extension of Q by K , with a special condition for how elements of Q multiply elements of K in G)
- (Semi-direct products are the simplest kind of group extensions; direct products are one example)

母 ▶ イヨ ▶ イヨ ▶ │

- In previous work, we had discovered a partial reverse to Quillen's plus construction in the high-dimensional manifold category
- \bullet Let M be a manifold of dimension 6 or higher, with $\pi_1(M) \cong Q$
- \bullet Let K be a finitely presented superperfect group
- Let G be a semi-direct product of Q by K, $G = K \rtimes Q$
- \bullet (This means G satisfies $1 \to K \to G \to Q \to 1$, so G is a group extension of Q by K , with a special condition for how elements of Q multiply elements of K in G)
- (Semi-direct products are the simplest kind of group extensions; direct products are one example)
- Then there is a cobordism (W, M, M) with $\pi_1(M) \cong G$ and $M \hookrightarrow W$ a simple homotopy equivalence

メタメメ きょくぼくしき

 \bullet We call (W, M, M_{-}) a semi-s-cobordism, because it is "half an s-cobordism"

医头面的头面的

 \bullet

 \bullet We call (W, M, M_+) a semi-s-cobordism, because it is "half an s-cobordism"

ミッ

 QQ

 \bullet We call (W, M, M_+) a semi-s-cobordism, because it is "half an s-cobordism"

\bullet

• Note (W, M_-, M) (read upside-down, with the roles of M and M_+ reversed) is a plus cobordism (so $(M_-)^+ \approx M$)

• What we would like to do now is "stack" these semi-s-cobordisms, forming (W_1, M, M_-) , (W_2, M_-, M_{--}) , and so on, out to infinity

 2990

- 4 重 8 - 4 重 8

- What we would like to do now is "stack" these semi-s-cobordisms, forming (W_1, M, M_-) , (W_2, M_-, M_{--}) , and so on, out to infinity
- Gluing W_1 and W_2 together across $M_$ and so on produces an $(n + 1)$ -dimesional, 1-ended manifold V whose neighborhoods of infinity are pseudo-collared

ARABA

- What we would like to do now is "stack" these semi-s-cobordisms, forming (W_1, M, M_-) , (W_2, M_-, M_{--}) , and so on, out to infinity
- Gluing W_1 and W_2 together across $M_$ and so on produces an $(n + 1)$ -dimesional, 1-ended manifold V whose neighborhoods of infinity are pseudo-collared

Pseudo-collars are generalizations of collar structures on the boundary of a manifold

 $\mathcal{A} \xrightarrow{\sim} \mathcal{B} \rightarrow \mathcal{A} \xrightarrow{\sim} \mathcal{B} \rightarrow$

 QQ

- Pseudo-collars are generalizations of collar structures on the boundary of a manifold
- We would like to produce many examples of open, 1-ended, $(n + 1)$ -dimensional pseudo-collared manifolds

医单位 医单位

- Pseudo-collars are generalizations of collar structures on the boundary of a manifold
- We would like to produce many examples of open, 1-ended, $(n + 1)$ -dimensional pseudo-collared manifolds
- We could just keep changing the kernel group K at each stage, but we would like to keep the same kernel group K

- Pseudo-collars are generalizations of collar structures on the boundary of a manifold
- We would like to produce many examples of open, 1-ended, $(n + 1)$ -dimensional pseudo-collared manifolds
- We could just keep changing the kernel group K at each stage, but we would like to keep the same kernel group K
- The idea is that there will be infintely many outer automorphisms, so we can form infintely many semi-direct products, each with a different outer automorphism

CALCE AND A TENNIS

- Pseudo-collars are generalizations of collar structures on the boundary of a manifold
- We would like to produce many examples of open, 1-ended, $(n + 1)$ -dimensional pseudo-collared manifolds
- We could just keep changing the kernel group K at each stage, but we would like to keep the same kernel group K
- The idea is that there will be infintely many outer automorphisms, so we can form infintely many semi-direct products, each with a different outer automorphism
- This is one advantage of using semi-direct products over direct products

And Band Band

Let M be a manifold of dimension $n \geq 6$ with fundamental group Z. Let P be a finitely presented, superperfect, centerless, Hopfian group with torsion elements of infinitely many different orders, and let $S = P * P$. Then there are uncountably many $(n + 1)$ -dimensional, pseudo-collarable, 1-ended manifolds V with boundary M

Let M be a manifold of dimension $n \geq 6$ with fundamental group Z. Let P be a finitely presented, superperfect, centerless, Hopfian group with torsion elements of infinitely many different orders, and let $S = P * P$. Then there are uncountably many $(n + 1)$ -dimensional, pseudo-collarable, 1-ended manifolds V with boundary M

 V will break up into semi-s-cobordisms (W_j, M_{j-1}, M_j) , where $G_j \cong S \rtimes G_{j-1}, G_j = \pi_1(M_j)$

Let M be a manifold of dimension $n \geq 6$ with fundamental group Z. Let P be a finitely presented, superperfect, centerless, Hopfian group with torsion elements of infinitely many different orders, and let $S = P * P$. Then there are uncountably many $(n + 1)$ -dimensional, pseudo-collarable, 1-ended manifolds V with boundary M

- V will break up into semi-s-cobordisms (W_j, M_{j-1}, M_j) , where $G_j \cong S \rtimes G_{j-1}, G_j = \pi_1(M_j)$
- Each G_i will, in fact, be isomorphic to $(S \times S \times \ldots \times S) \rtimes \mathbb{Z}$

Let M be a manifold of dimension $n \geq 6$ with fundamental group Z. Let P be a finitely presented, superperfect, centerless, Hopfian group with torsion elements of infinitely many different orders, and let $S = P * P$. Then there are uncountably many $(n + 1)$ -dimensional, pseudo-collarable, 1-ended manifolds V with boundary M

- V will break up into semi-s-cobordisms (W_j, M_{j-1}, M_j) , where $G_j \cong S \rtimes G_{j-1}, G_j = \pi_1(M_j)$
- Each G_i will, in fact, be isomorphic to $(S \times S \times \ldots \times S) \rtimes \mathbb{Z}$
- We will produce different $\mathit{G_j}$'s by varying the outer actions, a technical part of semi-direct products, while keeping the quotient group, $\mathbb Z$, and kernel group, S, essentially constant

メラトメ ミトメ ミト

Let M be a manifold of dimension $n \geq 6$ with fundamental group Z. Let P be a finitely presented, superperfect, centerless, Hopfian group with torsion elements of infinitely many different orders, and let $S = P * P$. Then there are uncountably many $(n + 1)$ -dimensional, pseudo-collarable, 1-ended manifolds V with boundary M

- V will break up into semi-s-cobordisms (W_j, M_{j-1}, M_j) , where $G_j \cong S \rtimes G_{j-1}, G_j = \pi_1(M_j)$
- Each G_i will, in fact, be isomorphic to $(S \times S \times \ldots \times S) \rtimes \mathbb{Z}$
- We will produce different $\mathit{G_j}$'s by varying the outer actions, a technical part of semi-direct products, while keeping the quotient group, $\mathbb Z$, and kernel group, S, essentially constant
- We will produce one V for each $\omega \in \Pi_{i=1}^{\infty} \{ 0,1 \}$ $\omega \in \Pi_{i=1}^{\infty} \{ 0,1 \}$

• There actually is a finitely presented, superperfect, centerless, Hopfian group with torsion elements of infinitely many different orders

- There actually is a finitely presented, superperfect, centerless, Hopfian group with torsion elements of infinitely many different orders
- Thompson's group V fits the bill

- There actually is a finitely presented, superperfect, centerless, Hopfian group with torsion elements of infinitely many different orders
- Thompson's group V fits the bill
- It is fintely presented, superperfect, simple (hence centerless and Hopfian - also perfect), and contains a copy of each S_n , hence of each finite group, hence torsion elements of each order

• Of course, it's pretty easy to whip out a 1-ended, pseudo-collarable manifold V: you just keep taking larger and larger $\,G\!j}$'s and $\,M\!j$'s and glue the cobordisms together

- Of course, it's pretty easy to whip out a 1-ended, pseudo-collarable manifold V: you just keep taking larger and larger $\,G\!j}$'s and $\,M\!j$'s and glue the cobordisms together
- The hard part is proving that the resulting pro-fundamental group systems at infinity are all non-isomorphic

- Of course, it's pretty easy to whip out a 1-ended, pseudo-collarable manifold V: you just keep taking larger and larger $\,G\!j}$'s and $\,M\!j$'s and glue the cobordisms together
- The hard part is proving that the resulting pro-fundamental group systems at infinity are all non-isomorphic
- For example, if $Q = \prod_{i=1}^{\infty} \mathbb{Z}$, $K_1 = \mathbb{Z}$, and $K_2 = \mathbb{Z} \times \mathbb{Z}$, then $G_1 = K_1 \times Q$ and $G_2 = K_2 \times Q$ are isomorphic, even though $K_1 \not\simeq K_2$

桐 レースモ レースモ レー

 \bullet We would like to relax the constraint on P that it have torsion elements of infinitely many different orders to that it contains a countably infinite subset U with the property that there is no isomorphism ψ of P which carries u_i onto u_j for u_i and u_j distinct elements of U , but have run into some technical difficulties

- \bullet We would like to relax the constraint on P that it have torsion elements of infinitely many different orders to that it contains a countably infinite subset U with the property that there is no isomorphism ψ of P which carries u_i onto u_j for u_i and u_j distinct elements of U , but have run into some technical difficulties
- \bullet This would open up more groups as possible candidates for P, for example, all fundamental groups of hyperbolic homology spheres of dimension > 3

a

医头面的头面

 $\,$ э

Lemma

Let A, B, C, and D be nontrivial groups and ley $\phi: A \times B \rightarrow C * D$ be a epimorphism. Then either $\phi(A \times \{1\})$ is all of $C * D$ and $\phi({1} \times B)$ is trivial or $\phi(A \times {1})$ is trivial and $\phi({1} \times B)$ is all of $C * D$

Allen Strate

Lemma

Let A, B, C, and D be nontrivial groups and ley $\phi: A \times B \to C * D$ be a epimorphism. Then either $\phi(A \times \{1\})$ is all of $C * D$ and $\phi({1} \times B)$ is trivial or $\phi(A \times {1})$ is trivial and $\phi({1} \times B)$ is all of $C * D$

• Remark This is really the grain of sand that led to the pearl that is the theorem. Everything must commute and the domain, and nothing can commute in the range

Lemma

Let A, B, C, and D be nontrivial groups and ley $\phi: A \times B \to C * D$ be a epimorphism. Then either $\phi(A \times \{1\})$ is all of $C * D$ and $\phi({1} \times B)$ is trivial or $\phi(A \times {1})$ is trivial and $\phi({1} \times B)$ is all of $C * D$

- Remark This is really the grain of sand that led to the pearl that is the theorem. Everything must commute and the domain, and nothing can commute in the range
- The proof uses the fact that a free product is never an internal direct product

A & Y B & Y B

Lemma (The Straightening-Up Lemma $(n = m)$)

Let $n = m$, let S be a free product, and let ψ : $S \times S \times ... \times S$ (n copies) \rightarrow $S \times S \times ... \times S$ (m copies) be an isomorphism. Write $\psi_{\boldsymbol{i},\boldsymbol{j}}$ for $\pi_{\boldsymbol{S}_{\boldsymbol{j}}}\circ\psi|_{\boldsymbol{S}_{\boldsymbol{i}}}.$ Then ψ splits as n isomorphisms $\psi_{\pmb{i},\sigma(\pmb{i})}$, with σ a permutation, with all other $\psi_{\pmb{i},\pmb{j}}$'s being the trivial map

Lemma (The Straightening-Up Lemma $(n = m)$)

Let $n = m$, let S be a free product, and let ψ : $S \times S \times ... \times S$ (n copies) \rightarrow $S \times S \times ... \times S$ (m copies) be an isomorphism. Write $\psi_{\boldsymbol{i},\boldsymbol{j}}$ for $\pi_{\boldsymbol{S}_{\boldsymbol{j}}}\circ\psi|_{\boldsymbol{S}_{\boldsymbol{i}}}.$ Then ψ splits as n isomorphisms $\psi_{\pmb{i},\sigma(\pmb{i})}$, with σ a permutation, with all other $\psi_{\pmb{i},\pmb{j}}$'s being the trivial map

Lemma (The Straightening-Up Corollary $(n > m)$)

Let $n > m$, let S be a Hopfian free product, and let ψ : $S \times S \times ... \times S$ (n copies) \rightarrow $S \times S \times ... \times S$ (m copies) be an epimorphism. Write $\psi_{\boldsymbol{i},\boldsymbol{j}}$ for $\pi_{\boldsymbol{S}_{\boldsymbol{j}}}\circ\psi|_{\boldsymbol{S}_{\boldsymbol{i}}}.$ Then ψ splits as m isomorphisms $\psi_{\sigma^{-1}(i),i}$, with σ a permutation, with all other $\psi_{i,j}$'s being the trivial map

メター・メモ トラモド

• For the next 2 Lemmas, we have

医单位 化重

 \sim

 299

э

- For the next 2 Lemmas, we have
- S a free product of 2 copies of the same group superperfect $P_1 * P_2$ (centerless and Hopfian for the Corollary) with an infinite list of torsion elements of different orders (all chosen from P_1)

- For the next 2 Lemmas, we have
- S a free product of 2 copies of the same group superperfect $P_1 * P_2$ (centerless and Hopfian for the Corollary) with an infinite list of torsion elements of different orders (all chosen from P_1)

$$
\quad \bullet \ \ G_1 = (S \times S \times \ldots \times S) \rtimes_{\phi_{u_1}, \phi_{u_2}, \ldots, \phi_{u_n}} \mathbb{Z} \ \text{and}
$$

- For the next 2 Lemmas, we have
- S a free product of 2 copies of the same group superperfect $P_1 * P_2$ (centerless and Hopfian for the Corollary) with an infinite list of torsion elements of different orders (all chosen from P_1)
- $\mathsf{G}_1 = (\mathsf{S} \times \mathsf{S} \times \ldots \times \mathsf{S}) \rtimes_{\phi_{u_1}, \phi_{u_2}, \ldots, \phi_{u_n}} \mathbb{Z}$ and
- $G_2 = (S \times S \times \ldots \times S) \rtimes_{\phi_{v_1}, \phi_{v_2}, \ldots, \phi_{v_m}} \mathbb{Z}$ are semi-direct products

A & Y B & Y B &

- For the next 2 Lemmas, we have
- S a free product of 2 copies of the same group superperfect $P_1 * P_2$ (centerless and Hopfian for the Corollary) with an infinite list of torsion elements of different orders (all chosen from P_1)
- $\mathsf{G}_1 = (\mathsf{S} \times \mathsf{S} \times \ldots \times \mathsf{S}) \rtimes_{\phi_{u_1}, \phi_{u_2}, \ldots, \phi_{u_n}} \mathbb{Z}$ and
- $G_2 = (S \times S \times \ldots \times S) \rtimes_{\phi_{v_1}, \phi_{v_2}, \ldots, \phi_{v_m}} \mathbb{Z}$ are semi-direct products

where ϕ_{u_i} is the outer action of $\mathbb Z$ on $\mathcal S$ given by $\phi_{u_i}(z)(p) = \begin{cases} p & \text{if } p \in P_1 \\ \frac{p}{z-1} & \text{if } p \in P_2 \end{cases}$ u_i^{-z} i_j^{-z} *pu*_i if $p \in P_2$

桐 トライモ トライモ トリー

- For the next 2 Lemmas, we have
- S a free product of 2 copies of the same group superperfect $P_1 * P_2$ (centerless and Hopfian for the Corollary) with an infinite list of torsion elements of different orders (all chosen from P_1)
- $\mathsf{G}_1 = (\mathsf{S} \times \mathsf{S} \times \ldots \times \mathsf{S}) \rtimes_{\phi_{u_1}, \phi_{u_2}, \ldots, \phi_{u_n}} \mathbb{Z}$ and
- $G_2 = (S \times S \times \ldots \times S) \rtimes_{\phi_{v_1}, \phi_{v_2}, \ldots, \phi_{v_m}} \mathbb{Z}$ are semi-direct products

where ϕ_{u_i} is the outer action of $\mathbb Z$ on $\mathcal S$ given by $\phi_{u_i}(z)(p) = \begin{cases} p & \text{if } p \in P_1 \\ \frac{p}{z-1} & \text{if } p \in P_2 \end{cases}$ u_i^{-z} i_j^{-z} *pu*_i if $p \in P_2$

(This particular kind of outer action is called a partial conjugation) **ALLA EN 185**

Lemma (The Conder Isomorphism Lemma $(n = m)$)

Let n = m, and let θ : $G_1 \rightarrow G_2$ be an isomorphism. Then θ restricts to an isomorphism on the commutator subgroup $K = S \times S \times \ldots \times S$, and S factors which correspond by the Straightening-Up Lemma ($n = m$) have ϕ_u 's with the same order in the definition of their semi-direct product

Lemma (The Conder Isomorphism Lemma $(n = m)$)

Let n = m, and let θ : $G_1 \rightarrow G_2$ be an isomorphism. Then θ restricts to an isomorphism on the commutator subgroup $K = S \times S \times ... \times S$, and S factors which correspond by the Straightening-Up Lemma ($n = m$) have ϕ_u 's with the same order in the definition of their semi-direct product

Lemma (The Conder Isomorphism Corollary $(n > m)$)

Let $n > m$, and let $\theta : G_1 \to G_2$ be an epimorphism. Then θ restricts to an epimorphism on the commutator subgroup $K = S \times S \times ... \times S$, and S factors which correspond by the Straightening-Up Corollary ($n > m$) have ϕ_u 's with the same order in the definition of their semi-direct product

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

Now, for $\Omega = \prod_{i=1}^{\infty} \{0,1\}$, we have the following binary tree

 $\mathbf{A} \equiv \mathbf{A} \times \mathbf{A} \equiv \mathbf{A}$

Now, for $\Omega = \prod_{i=1}^{\infty} \{0,1\}$, we have the following binary tree

We start at the root of the tree with $\mathbb Z$, and keep blowing this quotient group up by a semi-direct product with S at each node

к∋к

 QQ

We start at the root of the tree with $\mathbb Z$, and keep blowing this quotient group up by a semi-direct product with S at each node

 $Q \cap$

This gives rise to binary tree of group extensions ...

モミチ 一心語 $2Q$

This gives rise to binary tree of group extensions ...

... and semi-s-cobordisms

すぎわす 高

 299

э Пb.

... and semi-s-cobordisms

• Now, for each $\omega \in \Omega$, let (ω, n) be the corresponding finite sequence of length n

- 4 国家 3 国

- Now, for each $\omega \in \Omega$, let (ω, n) be the corresponding finite sequence of length n
- Corresponding to each $\omega \in \Omega$, we have an inverse sequence of groups $(\mathit{G}_{(\omega,n)},\alpha_{(\omega,n)})$

 QQ

- Now, for each $\omega \in \Omega$, let (ω, n) be the corresponding finite sequence of length n
- Corresponding to each $\omega \in \Omega$, we have an inverse sequence of groups $(\mathit{G}_{(\omega,n)},\alpha_{(\omega,n)})$
- Two inverse sequences are pro-isomorphic if and only if, after passing to subsequences, they may be put into a ladder diagram

• To finish off the proof, let ω and η be distinct sequences in Ω

 \sim

- イヨメ イヨ

 299

э

- To finish off the proof, let ω and η be distinct sequences in Ω
- Suppose ω and η agree up to some level n_0

 QQ

医单位 医单位

- To finish off the proof, let ω and η be distinct sequences in Ω
- Suppose ω and η agree up to some level n_0
- Consider the 1-ended, pseudo-collarable $(n + 1)$ -manifolds V_{ω} and V_n

 QQ

- To finish off the proof, let ω and η be distinct sequences in Ω
- Suppose ω and η agree up to some level n_0
- Consider the 1-ended, pseudo-collarable $(n + 1)$ -manifolds V_{ω} and V_n
- Suppose, after passing to subsequences, we have their pro-fundamental group systems at infinity fitting into a ladder diagram

By passing to a further subsequence if necessary, we may assume $n_0 < m_1 < n_2 < m_3 < \ldots$

 2990

э

- 4 重 8 - 4 重 8

By passing to a further subsequence if necessary, we may assume $n_0 < m_1 < n_2 < m_3 < \ldots$

• Now, g_{n2} fits the form for the Conder Isomorphism Corollary $(n > m)$, so it must be onto m_1 copies of S and corresponding copies of S must have ϕ_{u_i} 's withe same order

By passing to a further subsequence if necessary, we may assume $n_0 < m_1 < n_2 < m_3 < \ldots$

- Now, g_{n2} fits the form for the Conder Isomorphism Corollary $(n > m)$, so it must be onto m_1 copies of S and corresponding copies of S must have ϕ_{u_i} 's withe same order
- But, ω and η only agree up to n_0 and cannot have ϕ_{u_i} 's with the same orders on the remaining $m_1 - n_0$ corresponding copies of S!

A & Y B & Y B &

By passing to a further subsequence if necessary, we may assume $n_0 < m_1 < n_2 < m_3 < \ldots$

- Now, g_{n2} fits the form for the Conder Isomorphism Corollary $(n > m)$, so it must be onto m_1 copies of S and corresponding copies of S must have ϕ_{u_i} 's withe same order
- But, ω and η only agree up to n_0 and cannot have ϕ_{u_i} 's with the same orders on the remaining $m_1 - n_0$ corresponding copies of S!
- This concludes the proof

THE END

Jeffrey Rolland [Some Constructions of Pseudo-Collarable 1-Ended Manifolds](#page-0-0)

イロト イ部 トイ君 トイ君 ト

 299

活