A Geometric Reverse to Quillen's Plus Construction

Jeffrey Rolland

Department of Mathematical Sciences University of Wisconsin–Milwaukee

June 4, 2009

 \triangleright Quillen's Plus Construction is a way of taking a CW cx or mfld X whose fund gp G contains a perfect normal subgp P and creating a new CW cx or mfld X^+ whose fund gp is simpler, namely $Q = G/P.$

- \triangleright Quillen's Plus Construction is a way of taking a CW cx or mfld X whose fund gp G contains a perfect normal subgp P and creating a new CW cx or mfld X^+ whose fund gp is simpler, namely $Q = G/P.$
- If the object is a mfld, the Plus Construction creates a cobordism between the two mflds which gives rise to a map f between the two mflds.
- \triangleright Quillen's Plus Construction is a way of taking a CW cx or mfld X whose fund gp G contains a perfect normal subgp P and creating a new CW cx or mfld X^+ whose fund gp is simpler, namely $Q = G/P$.
- If the object is a mfld, the Plus Construction creates a cobordism between the two mflds which gives rise to a map f between the two mflds.
- If the object is a CW cx, the Plus Construction simply create a map f between the two CW cxs.
- \triangleright Quillen's Plus Construction is a way of taking a CW cx or mfld X whose fund gp G contains a perfect normal subgp P and creating a new CW cx or mfld X^+ whose fund gp is simpler, namely $Q = G/P$
- If the object is a mfld, the Plus Construction creates a cobordism between the two mflds which gives rise to a map f between the two mflds
- If the object is a CW cx, the Plus Construction simply create a map f between the two CW cxs.
- In either case, the map f is a $\mathbb{Z}Q$ -homology isomorphism.

 \blacktriangleright The Plus Construction is important in, for example, algebraic Ktheory, where $\mathcal{K}_n(G)$ is defined to be $\pi_n(BGL(\mathbb{Z} G)^+)$, where

- \triangleright The Plus Construction is important in, for example, algebraic Ktheory, where $\mathcal{K}_n(G)$ is defined to be $\pi_n(BGL(\mathbb{Z} G)^+)$, where
- In GL(R) is the direct limit of all the $GL_n(R)$.
- \triangleright The Plus Construction is important in, for example, algebraic Ktheory, where $\mathcal{K}_n(G)$ is defined to be $\pi_n(BGL(\mathbb{Z} G)^+)$, where
- \blacktriangleright GL(R) is the direct limit of all the $GL_n(R)$.
- \triangleright BG is the classifying space of G.
- \triangleright The Plus Construction is important in, for example, algebraic Ktheory, where $\mathcal{K}_n(G)$ is defined to be $\pi_n(BGL(\mathbb{Z} G)^+)$, where
- GL(R) is the direct limit of all the $GL_n(R)$.
- \triangleright BG is the classifying space of G.
- In The perfect normal subgp by which we mod out is $E(Z, G)$, the subgroup generated by the elementary matrices.

▶ What we have discovered is a theory of a Geometric Reverse to Quillen's Plus Construction.

- \triangleright What we have discovered is a theory of a Geometric Reverse to Quillen's Plus Construction.
- **If** Specifically, given a closed mfld N with fund gp $Q = \pi_1(N)$ and a f.p. superperfect group P, we construct a cpt one-sided h-cobordism W whose left-hand bdy component is N and whose right-hand boundary component is a closed mfld M whose fund. gp. $G = \pi_1(M)$ satisfies

$$
1\to P\to G\to Q\to 1
$$

and with $M \rightsquigarrow N$.

- ▶ What we have discovered is a theory of a Geometric Reverse to Quillen's Plus Construction.
- **F** Specifically, given a closed mfld N with fund gp $Q = \pi_1(N)$ and a f.p. superperfect group P, we construct a cpt one-sided h-cobordism W whose left-hand bdy component is N and whose right-hand boundary component is a closed mfld M whose fund. gp. $G = \pi_1(M)$ satisfies

$$
1 \to P \to \mathsf{G} \to Q \to 1
$$

and with $W \rightsquigarrow N$.

 \triangleright Note that G and Q are necessarily f.p..

In 1976-8, J.C. Hausmann and P. Vogel investigated the problem of a reverse to the Plus Construction.

- In 1976-8, J.C. Hausmann and P. Vogel investigated the problem of a reverse to the Plus Construction.
- \triangleright When their results work, they are are more comprehensive than ours.
- \triangleright In 1976-8, J.C. Hausmann and P. Vogel investigated the problem of a reverse to the Plus Construction.
- \triangleright When their results work, they are are more comprehensive than ours.
- \blacktriangleright However, their work was unknown to us at the time we did our work.
- In 1976-8, J.C. Hausmann and P. Vogel investigated the problem of a reverse to the Plus Construction.
- \blacktriangleright Their results are are more comprehensive than ours.
- \blacktriangleright However, their work was unknown to us at the time we did our work.
- \triangleright Also, although our work only creates one mfld for the reverse, instead of all possible mflds for reverses as Hausmann and Vogel do, it is possibly harder to determine when their results produce any reverses, and our work is somewhat more geometric than theirs.

Recall that a open collar on the bdy of a mfld M is an embedding $e : \partial M \times [0,1) \rightarrow M$. The bdy of every mfld is collared.

- Recall that a open collar on the bdy of a mfld M is an embedding $e : \partial M \times [0,1) \rightarrow M$. The bdy of every mfld is collared.
- An neighborhood of infinity of an open mfld M is a subset U of M such that $\overline{M\setminus U}$ is cpt.
- Recall that a open collar on the bdy of a mfld M is an embedding $e : \partial M \times [0, 1) \rightarrow M$. The bdy of every mfld is collared.
- An neighborhood of infinity of an open mfld M is a subset U of M such that $M \setminus U$ is cpt.
- A nbd of infinity U is an open collar nbd of infinity if and only if U is a mfld with cpt bdy and $U \approx \partial U \times [0,1)$.
- Recall that a open collar on the bdy of a mfld M is an embedding $e : \partial M \times [0, 1) \rightarrow M$. The bdy of every mfld is collared.
- An neighborhood of infinity of an open mfld M is a subset U of M such that $M \setminus U$ is cpt.
- A nbd of infinity U is an open collar nbd of infinity if and only if U is a mfld with cpt bdy and $U \approx \partial U \times [0,1)$.
- \triangleright Siebenmann's Thesis gives necessary and sufficient conditions on an open n-mfld M that it admit an open collar nbd of infinity.

 \blacktriangleright In work of Craig Guilbault and Fred Tinsley, investigations are made in placing pseudo-collar nbds of infinity on open mflds.

- \blacktriangleright In work of Craig Guilbault and Fred Tinsley, investigations are made in placing **pseudo-collar** nbds of infinity on open mflds.
- \triangleright Pseudo-collar nbds of infinity always admit a decomposition as repetitions of reverse-plus construction cobordisms.
- In work of Craig Guilbault and Fred Tinsley, investigations are made in placing pseudo-collar nbds of infinity on open mflds.
- \triangleright Pseudo-collar nbds of infinity always admit a decomposition as repetitions of reverse-plus construction cobordisms.
- \triangleright Open collar nbds of infinity are a special case of pseudo-collars; they are repetitions of trivial (product $\partial U \times \mathbb{I}$) reverse-plus construction cobordisms.
- \blacktriangleright In work of Craig Guilbault and Fred Tinsley, investigations are made in placing **pseudo-collar** nbds of infinity on open mflds.
- \triangleright Pseudo-collar nbds of infinity always admit a decomposition as repetitions of reverse-plus construction cobordisms.
- \triangleright Open collar nbds of infinity are a special case of pseudo-collars; they are repetitions of trivial (product $\partial U \times \mathbb{I}$) reverse-plus construction cobordisms.
- \triangleright Repeating reverse-plus constructions to produce pseudo-collars will be an important application of, and in fact was the motivation for, this work.

For further reference on the Group Extension Problem, the interested reader is referred to Homology by MacLane, pages 124-129.

 \triangleright The Group Extension Problem seeks to classify, for given groups K and Q, all groups G satisfying

$$
1\to \mathsf{K}\to \mathsf{G}\to \mathsf{Q}\to 1
$$

For further reference on the Group Extension Problem, the interested reader is referred to Homology by MacLane, pages 124-129.

 \triangleright The Group Extension Problem seeks to classify, for given groups K and Q, all groups G satisfying

$$
1\to K\to G\to Q\to 1
$$

In Note that one solution to this problem is always just $Q \times K$. The classification gives all other solutions.

For further reference on the Group Extension Problem, the interested reader is referred to Homology by MacLane, pages 124-129.

 \triangleright The Group Extension Problem seeks to classify, for given groups K and Q, all groups G satisfying

$$
1 \to \mathsf{K} \to \mathsf{G} \to \mathsf{Q} \to 1
$$

- In Note that one solution to this problem is always just $Q \times K$. The classification gives all other solutions.
- \triangleright This classification is given up to an isomorphism of two groups G and G' which makes a ladder of short exact sequences commute using the identity on K and Q , a so-called congruence of extensions.

$$
\begin{array}{ccccccc}\n1 & \rightarrow & K & \rightarrow & G & \rightarrow & Q & \rightarrow & 1 \\
& = & \cong & = & \\
1 & \rightarrow & K & \rightarrow & G' & \rightarrow & Q & \rightarrow & 1\n\end{array}
$$

Recall that an action of a gp Q on a top space X may be viewed as a contin hom $\Phi: Q \to \text{Homeo}(X)$.

- Recall that an action of a gp Q on a top space X may be viewed as a contin hom $\Phi: Q \to \text{Homeo}(X)$.
- An action of a group Q on a group K is a hom $\phi : Q \to Aut(K)$.
- Recall that an action of a gp Q on a top space X may be viewed as a contin hom $\Phi: Q \to \text{Homeo}(X)$.
- An action of a group Q on a group K is a hom $\phi : Q \to Aut(K)$.
- For a group K, $Inn(K)$ is the group of inner automorphisms; it is a normal subgp of $Aut(K)$. $Out(K) = Aut(K)/Inn(K)$ is the outer automorphism gp.
- Recall that an action of a gp Q on a top space X may be viewed as a contin hom $\Phi: Q \to \text{Homeo}(X)$.
- An action of a group Q on a group K is a hom $\phi : Q \to Aut(K)$.
- For a group K, $Inn(K)$ is the group of inner automorphisms; it is a normal subgp of $Aut(K)$. $Out(K) = Aut(K)/Inn(K)$ is the outer automorphism gp.
- An outer action of a gp Q on a gp K is a hom $\psi: Q \to Out(K)$.
- Recall that an action of a gp Q on a top space X may be viewed as a contin hom $\Phi: Q \to \text{Homeo}(X)$.
- An action of a group Q on a group K is a hom $\phi : Q \to Aut(K)$.
- For a group K, $Inn(K)$ is the group of inner automorphisms; it is a normal subgp of $Aut(K)$. $Out(K) = Aut(K)/Inn(K)$ is the outer automorphism gp.
- An outer action of a gp Q on a gp K is a hom $\psi: Q \to Out(K)$.
- \triangleright Given a gp G solving a given group extension problem, there is a canonical outer action of the quotient group Q on the kernel group K.
- Recall that an action of a gp Q on a top space X may be viewed as a contin hom $\Phi: Q \to \text{Homeo}(X)$.
- An action of a group Q on a group K is a hom $\phi : Q \to Aut(K)$.
- For a group K, $Inn(K)$ is the group of inner automorphisms; it is a normal subgp of $Aut(K)$. $Out(K) = Aut(K)/Inn(K)$ is the outer automorphism gp.
- An outer action of a gp Q on a gp K is a hom $\psi : Q \to Out(K)$.
- \triangleright Given a gp G solving a given group extension problem, there is a canonical outer action of the quotient group Q on the kernel group K.
- \triangleright So, to solve the Group Extension Problem, we begin with an outer action ψ of Q on K .

► An outer action ψ gives rise to an element $u(\psi) \in H^3(Q; Z(K))$, the third cohomology of Q with coefficients in the center of K .

- ► An outer action ψ gives rise to an element $u(\psi) \in H^3(Q; Z(K))$, the third cohomology of Q with coefficients in the center of K .
- \triangleright An outer action gives rise to actual solutions of the Group Extension Problem if and only if $u(\psi) = 0 \in H^3(Q; Z(K))$. We call $u(\psi)$ the obstruction to solving the Group Extension Problem for Q , K, and ψ .
- ▶ An outer action ψ gives rise to an element $u(\psi) \in H^3(Q; Z(K))$, the third cohomology of Q with coefficients in the center of K .
- \triangleright An outer action gives rise to actual solutions of the Group Extension Problem if and only if $u(\psi) = 0 \in H^3(Q; Z(K))$. We call $u(\psi)$ the obstruction to solving the Group Extension Problem for Q , K , and ψ .
- Denote by $\mathcal{O}(Q, K)$ the collection of outer actions of Q on K which have trivial obstruction.
- ► An outer action ψ gives rise to an element $u(\psi) \in H^3(Q;Z(K))$, the third cohomology of Q with coefficients in the center of K .
- \triangleright An outer action gives rise to actual solutions of the Group Extension Problem if and only if $u(\psi) = 0 \in H^3(Q; Z(K))$. We call $u(\psi)$ the obstruction to solving the Group Extension Problem for Q , K, and ψ .
- Denote by $\mathcal{O}(Q, K)$ the collection of outer actions of Q on K which have trivial obstruction.

Solution to the Group Extension Problem

The congruence classes of solutions G to the Group Extension Problem with kernel K and quotient Q are in bijective correnspondence with $\mathcal{O}(Q,K)\times H^2(Q;Z(K)).$

An equivalent characterization of perfect is that a gp P is perfect if and only if $H_1(P) \cong 0$.

An equivalent characterization of perfect is that a gp P is perfect if and only if $H_1(P) \cong 0$.

Definition

A gp P is superperfect if and only if $H_1(P) \cong H_2(P) \cong 0$.

 \blacktriangleright For the rest of this talk, all mflds are assumed to be orientable.

Theorem

Let $n \geq 6$. Let N be a closed n-manifold with $Q = \pi_1(N)$. Let P be f.p. and superperfect. Then there exists a cpt n-dimensional 1-sided h-cobordism (W, N, M) with left-hand bdy N and with right-hand bdy M having $\pi_1(M) \cong G$, where G is a gp extension of Q by P with trivial second homology elt and with $N \hookrightarrow W$ a simple homotopy equivalence.

► For $Q \cong 1$, this result was already known, as a corollary to Kervaire's Theorem that every homology sphere bounds a contractible manifold.

- For $Q \cong 1$, this result was already known, as a corollary to Kervaire's Theorem that every homology sphere bounds a contractible manifold.
- \blacktriangleright However, we supply a new proof of this fact.

Begin by crossing N with \mathbb{I} .

- Begin by crossing N with \mathbb{I} .
- ► Let $Q \cong $\alpha_1, \ldots, \alpha_{k_1}|r_1, \ldots, r_{l_1} >$ be a presentation for Q .$
- Begin by crossing N with \mathbb{I} .
- ► Let $Q \cong $\alpha_1, \ldots, \alpha_{k_1}|r_1, \ldots, r_{l_1} >$ be a presentation for Q .$
- ► Let $P \cong $\beta_1, \ldots, \beta_{k_2} | s_1, \ldots, s_{l_2} >$ be a presentation for P .$
- Begin by crossing N with \mathbb{I} .
- ► Let $Q \cong $\alpha_1, \ldots, \alpha_{k_1}|r_1, \ldots, r_{l_1} >$ be a presentation for Q .$
- ► Let $P \cong $\beta_1, \ldots, \beta_{k_2} | s_1, \ldots, s_{l_2} >$ be a presentation for P .$
- \blacktriangleright Take a small disk D inside of $N \times \{1\}$.
- Begin by crossing N with \mathbb{I} .
- ► Let $Q \cong $\alpha_1, \ldots, \alpha_{k_1}|r_1, \ldots, r_{l_1} >$ be a presentation for Q .$
- ► Let $P \cong $\beta_1, \ldots, \beta_{k_2} | s_1, \ldots, s_{l_2} >$ be a presentation for P .$
- \blacktriangleright Take a small disk D inside of $N \times \{1\}$.
- \triangleright Attach trivial 1-handles inside the disk for each generator $β$ of P .
- Begin by crossing N with \mathbb{I} .
- ► Let $Q \cong $\alpha_1, \ldots, \alpha_{k_1}|r_1, \ldots, r_{l_1} >$ be a presentation for Q .$
- ► Let $P \cong $\beta_1, \ldots, \beta_{k_2} | s_1, \ldots, s_{l_2} >$ be a presentation for P .$
- \blacktriangleright Take a small disk D inside of $N \times \{1\}$.
- \triangleright Attach trivial 1-handles inside the disk for each generator $β$ of P .
- Attach 2-handles across the disk for each relator s of P .

 \triangleright As a corollary to the Solution to the Group Extension Problem, since we are using the trivial 2nd homology element, for each element $\beta_i \alpha_i$ in G, there is a word $w_{i,j}$ in the β 's so that $\beta_i\alpha_j=\alpha_jw_{i,j}$.

- \triangleright As a corollary to the Solution to the Group Extension Problem, since we are using the trivial 2nd homology element, for each element $\beta_i \alpha_i$ in G , there is a word $w_{i,j}$ in the β 's so that $\beta_i\alpha_j=\alpha_jw_{i,j}.$
- ► Attach a 2-handle across each $\beta_i\alpha_j(\alpha_j w_{i,j})^{-1}$ (these will leak outside the disk).
- \triangleright As a corollary to the Solution to the Group Extension Problem, since we are using the trivial 2nd homology element, for each element $\beta_i \alpha_i$ in G , there is a word $w_{i,j}$ in the β 's so that $\beta_i\alpha_j=\alpha_jw_{i,j}.$
- ► Attach a 2-handle across each $\beta_i\alpha_j(\alpha_j w_{i,j})^{-1}$ (these will leak outside the disk).
- ► Now, we have a cobordism (W_1, N, M) with $\pi_1(N) \cong Q$, $\pi_1(W_1) \cong G$, and $\pi_1(M) \cong G$.

Lemma

Let $\overline{W_1}$ be the cover of W_1 with fund gp P (and covering transformation group Q). Then we may arrange the handles attached to $\overline{W_1}$ across \overline{M} so that they project down equivariantly via the covering map to corresponding handles attached to W across M.

So, now the relative handlebody chain complex of $(\overline{W_1}, \widetilde{N})$ looks like

$$
\longrightarrow C_3(\overline{W_1}, \widetilde{N}; \mathbb{Z}) \longrightarrow C_2(\overline{W_1}, \widetilde{N}; \mathbb{Z}) \stackrel{\partial}{\longrightarrow} C_1(\overline{W_1}, \widetilde{N}; \mathbb{Z}) \longrightarrow C_0(\overline{W_1}, \widetilde{N}; \mathbb{Z}) \longrightarrow
$$

• Call
$$
A = \bigoplus_{i=1}^{l_2} \mathbb{Z} Q
$$
 and call $B = \bigoplus_{j=1}^{k_2} \mathbb{Z} Q$.

\n- Call
$$
A = \bigoplus_{i=1}^{b} \mathbb{Z}Q
$$
 and call $B = \bigoplus_{j=1}^{k_2} \mathbb{Z}Q$.
\n- Since $H_1(\overline{W_1}) = 0$, $\partial|_A$ is onto.
\n

 \blacktriangleright Call $A = \bigoplus_{i=1}^{k} \mathbb{Z} Q$ and call $B = \bigoplus_{j=1}^{k_2} \mathbb{Z} Q$.

$$
\blacktriangleright \text{ Since } H_1(\overline{W_1}) = 0, \ \partial|_A \text{ is onto.}
$$

 \blacktriangleright Clearly, B is a free $\mathbb{Z} Q$ -module.

Lemma

Let A, B , and C be R -modules, with B a free R -module (on the basis F), and let $\Theta: \mathsf{A}\bigoplus\mathsf{B}\to \mathsf{C}$ be an $\mathsf{R}\text{-module homomorphism. }$ Suppose $\Theta|_{\mathsf{A}}$ is onto. Then ker $(\Theta) \cong \ker(\Theta|_A) \bigoplus B$.

► So, ker (∂) is a free, finitely generated $\mathbb{Z}Q$ -module

► So, ker (∂) is a free, finitely generated $\mathbb{Z} Q$ -module Also, $\pi_1(\overline{W_1})$ is superperfect.

Lemma (Superperfect Groups Have Spherical Elements for H_2) Let P be a superperfect group. Let M be a manifold which has fundamental group isomorphic to P. Then any element of $H_2(M)$ can be killed by attaching 3-handles.

 \triangleright This lemma may be seen as a direct corollary of the definition of superperfect.

► So, we can make $H_*(\overline{W_1}, \widetilde{N}; \mathbb{Z}Q) = 0$.

- ► So, we can make $H_*(\overline{W_1}, \widetilde{N}; \mathbb{Z}Q) = 0$.
- ► Unfortunately, $\pi_1(W_1) \cong G$, not Q.

 \triangleright So, we add canceling 2-, 3-, and 4-handles for all the 1-, 2-, and 3-handles we added to W.

- \triangleright So, we add canceling 2-, 3-, and 4-handles for all the 1-, 2-, and 3-handles we added to W.
- \blacktriangleright This creates a cobordism (W_2, M, N) with $W_1\bigcup_M W_2$ homeomorphic to $N \times \mathbb{I}$.
- ▶ So, we add canceling 2-, 3-, and 4-handles for all the 1-, 2-, and 3-handles we added to W.
- \blacktriangleright This creates a cobordism (W_2, M, N) with $W_1\bigcup_M W_2$ homeomorphic to $N \times I$.
- Finally, read W_2 from right to left.
- \triangleright So, we add canceling 2-, 3-, and 4-handles for all the 1-, 2-, and 3-handles we added to W.
- \blacktriangleright This creates a cobordism (W_2, M, N) with $W_1\bigcup_M W_2$ homeomorphic to $N \times I$.
- Finally, read W_2 from right to left.
- **Firm** This creates a cobordism (W_3, N, M) with $[(n+1)-4]$ -, $[(n+1)-3]$ -, and $[(n+1)-2]$ -handles added.
- \triangleright So, we add canceling 2-, 3-, and 4-handles for all the 1-, 2-, and 3-handles we added to W.
- \blacktriangleright This creates a cobordism (W_2, M, N) with $W_1\bigcup_M W_2$ homeomorphic to $N \times I$.
- Finally, read W_2 from right to left.
- **Firm** This creates a cobordism (W_3, N, M) with $[(n+1)-4]$ -, $[(n+1)-3]$ -, and $[(n+1)-2]$ -handles added.
- \blacktriangleright This means $\pi_1(W_3) \cong Q$, as $n \geq 6$.

$$
\blacktriangleright \text{ Now, } \pi_1(\widetilde{W}_3) \cong 1.
$$

► Now,
$$
\pi_1(\widetilde{W}_3) \cong 1
$$
.
▶ Also, $H_*(\widetilde{W}_3, \widetilde{N}) = 0$, by a duality argument.

- \blacktriangleright Now, $\pi_1(\widetilde{W}_3) \cong 1$.
- Also, $H_*(\widetilde{W}_3, \widetilde{N}) = 0$, by a duality argument.
- So, by the relative Hurewicz theorem, $\pi_n(\widetilde{W}_3, \widetilde{N}) = \pi_n(W_3, N) = 0$ for $n \geq 2$.
- \blacktriangleright Now, $\pi_1(\widetilde{W}_3) \cong 1$.
- Also, $H_*(\widetilde{W}_3, \widetilde{N}) = 0$, by a duality argument.
- So, by the relative Hurewicz theorem, $\pi_n(\widetilde{W}_3, \widetilde{N}) = \pi_n(W_3, N) = 0$ for $n > 2$.
- \blacktriangleright This proves $W_3 \rightsquigarrow N$
- Now, $\pi_1(W_3) \cong 1$.
- Also, $H_*(W_3, N) = 0$, by a duality argument.
- ► So, by the relative Hurewicz theorem, $\pi_n(\widetilde{W}_3, \widetilde{N}) = \pi_n(W_3, N) = 0$ for $n > 2$.
- \blacktriangleright This proves $W_3 \rightsquigarrow N$
- \triangleright Because of the special nature of the group extension G and by an otherwise well-known technique (Rourke & Sanderson, P. 90), we may adjust the torsion on M so that $N \hookrightarrow W_3$ is a simple homotopy equivalence.
Proof of the Geometric Reverses

\triangleright THE END

Definition

 $\{X, BG^+\}$ is defined to be the subset of $[X, BG^+]$ represented by $g: X \to BG^+$ such that

(1) $g_{\#} : \pi_1(X) \to Q$ makes the following diagram commute on fundamental groups:

 (2) $\pi_2(g)$: $\pi_2(X) \rightarrow \pi_2(BG^+)$ is onto

Corollary (Hausmann and Vogel, 1978)

Let M be a closed CAT-manifold of dimension $n > 5$ with fundamental group Q. Let X be the associated CW complex of cores and let $q : M \to X$ be the simple homotopy equivalence between M and X. Let P be a locally perfect group and let G be a group extension of Q by P. Then the set of all semi-s-cobordisms $(W, M, M₋)$ with left-hand boundary M and right-hand boundary having fundamental group isomorphic to G is in bijective correspondence with $\{X, BG^+\}$.

Theorem (Hausmann, 1978)

Let M be a closed CAT-manifold of dimension $n > 5$ with $\pi_1(M) = Q$. Let Φ : $G \rightarrow Q$ be a homomorphism with kernel P, where P is f.p., locally perfect (every f.g. subgroup is perfect), and superperfect. Assume one of the following conditions is realized:

(a) $\Phi^+ : BG^+ \rightarrow BQ$ admits a homotopy section $s : BQ \rightarrow BG^+$ such that the following diagram is homotopy commutative:

(Con'd)

Theorem (Con'd) (b) $H^i(BQ, \partial M; \pi_{i-1}(BG^+)) = 0$ for $4 \leq i \leq n$ $(c) H^{i}(M, \partial M; \pi_{i-1}(BG^+)) = 0$ for $i \geq 4$ Then there exists a compact CAT-manifold M_{-with} $\partial(M_+) = \partial M$ and a map $f : M_-\to M$ such that (1) $\pi_1(M_-) \cong G$ and $f_{\#} = \Phi$ $(2) \omega_1(M_-) = f^*(\omega_1(M))$, where ω_1 is the first Stiefel-Whitney class (3) f_* is a $\mathbb{Z}Q$ -homology isomorphism.